Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 182: 106147, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37178811

RESUMEN

Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified. Plasma samples from 49 severe COVID-19 patients, 50 mild COVID-19 patients, and 40 healthy controls were subjected to Olink proteomics analysis of 184 CNS-enriched proteins. By using a multi-approach bioinformatics analysis, we identified a 34-neurological protein signature for COVID-19 severity and unveiled dysregulated neurological pathways in severe cases. Here, we identified a new neurological protein signature for severe COVID-19 that was validated in different independent cohorts using blood and postmortem brain samples and shown to correlate with neurological diseases and pharmacological drugs. This protein signature could potentially aid the development of prognostic and diagnostic tools for neurological complications in post-COVID-19 convalescent patients with long term neurological sequelae.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Enfermedades del Sistema Nervioso/etiología , Sistema Nervioso Central , Encéfalo
2.
Nat Commun ; 13(1): 946, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177642

RESUMEN

COVID-19 complications still present a huge burden on healthcare systems and warrant predictive risk models to triage patients and inform early intervention. Here, we profile 893 plasma proteins from 50 severe and 50 mild-moderate COVID-19 patients, and 50 healthy controls, and show that 375 proteins are differentially expressed in the plasma of severe COVID-19 patients. These differentially expressed plasma proteins are implicated in the pathogenesis of COVID-19 and present targets for candidate drugs to prevent or treat severe complications. Based on the plasma proteomics and clinical lab tests, we also report a 12-plasma protein signature and a model of seven routine clinical tests that validate in an independent cohort as early risk predictors of COVID-19 severity and patient survival. The risk predictors and candidate drugs described in our study can be used and developed for personalized management of SARS-CoV-2 infected patients.


Asunto(s)
Proteínas Sanguíneas/análisis , COVID-19/mortalidad , COVID-19/patología , Índice de Severidad de la Enfermedad , Adulto , Citocinas/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Proteómica/métodos , SARS-CoV-2/efectos de los fármacos , Adulto Joven , Tratamiento Farmacológico de COVID-19
3.
Viruses ; 13(5)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925055

RESUMEN

The COVID-19 pandemic has affected all individuals across the globe in some way. Despite large numbers of reported seroprevalence studies, there remains a limited understanding of how the magnitude and epitope utilization of the humoral immune response to SARS-CoV-2 viral anti-gens varies within populations following natural infection. Here, we designed a quantitative, multi-epitope protein microarray comprising various nucleocapsid protein structural motifs, including two structural domains and three intrinsically disordered regions. Quantitative data from the microarray provided complete differentiation between cases and pre-pandemic controls (100% sensitivity and specificity) in a case-control cohort (n = 100). We then assessed the influence of disease severity, age, and ethnicity on the strength and breadth of the humoral response in a multi-ethnic cohort (n = 138). As expected, patients with severe disease showed significantly higher antibody titers and interestingly also had significantly broader epitope coverage. A significant increase in antibody titer and epitope coverage was observed with increasing age, in both mild and severe disease, which is promising for vaccine efficacy in older individuals. Additionally, we observed significant differences in the breadth and strength of the humoral immune response in relation to ethnicity, which may reflect differences in genetic and lifestyle factors. Furthermore, our data enabled localization of the immuno-dominant epitope to the C-terminal structural domain of the viral nucleocapsid protein in two independent cohorts. Overall, we have designed, validated, and tested an advanced serological assay that enables accurate quantitation of the humoral response post natural infection and that has revealed unexpected differences in the magnitude and epitope utilization within a population.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Antígenos Virales/inmunología , COVID-19/epidemiología , COVID-19/virología , Prueba Serológica para COVID-19 , Estudios de Casos y Controles , Estudios de Cohortes , Epítopos , Etnicidad , Femenino , Humanos , Inmunidad Humoral , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/inmunología , Pandemias , SARS-CoV-2/genética , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Índice de Severidad de la Enfermedad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...