Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosciences (Riyadh) ; 29(2): 103-112, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38740397

RESUMEN

OBJECTIVES: To investigate the fundamental mechanisms of the neuroprotective impact of Astaxanthin (AST) in a mouse model of Alzheimer's disease (AD) induced by scopolamine. METHODS: This research constituted an in vivo animal study encompassing 36 adult male mice, divided into 6 groups: Control, 100 mg/kg AST, 2 mg/kg scopolamine (AD group), 100 mg/kg AST+2 mg/kg scopolamine, 3 mg/kg galantamine+2 mg/kg scopolamine, and 100 mg/kg AST+3 mg/kg galantamine+2 mg/kg scopolamine. After 14 days, the mice's short-term memory, hippocampus tissue, oxidative and inflammatory markers were evaluated. RESULTS: The AST demonstrated a beneficial influence on short-term memory and a reduction in acetylcholinesterase activity in the brain. It exhibited neuroprotective and anti-amyloidogenic properties, significantly decreased pro-inflammatory markers and oxidative stress, and reversed the decline of the Akt-1 and phosphorylated Akt pathway, a crucial regulator of abnormal tau. Furthermore, AST enhanced the effect of galantamine in reducing inflammation and oxidative stress. CONCLUSION: The findings indicate that AST may offer therapeutic benefits against cognitive dysfunction in AD. This is attributed to its ability to reduce oxidative stress, control neuroinflammation, and enhance Akt-1 and pAkt levels, thereby underscoring its potential in AD treatment strategies.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Fármacos Neuroprotectores , Estrés Oxidativo , Escopolamina , Xantófilas , Animales , Xantófilas/farmacología , Xantófilas/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Acetilcolinesterasa/metabolismo , Galantamina/farmacología , Galantamina/uso terapéutico , Memoria a Corto Plazo/efectos de los fármacos
2.
Front Pharmacol ; 12: 613634, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33927613

RESUMEN

Diabetic neuropathy (DN) commonly occurs in diabetics, affecting approximately 50% of both type 1 and 2 diabetic patients. It is a leading cause of non-traumatic amputations. Oxidative stress could play a key role in the pathophysiology of DN. This study aimed to investigate the potential neuroprotective effect of carvedilol on STZ-induced DN in rats. Thirty male Sprague Dawley rats (weighing 200-250 g) were randomly divided into five groups (six/group), where group 1 (negative control) received only the vehicle (0.5% of carboxymethyl cellulose orally 1 ml/kg). DN was induced by a single injection of remaining rats with streptozotocin (STZ; 50 mg/kg, i.p.). After diabetes induction, group 2 served as the diabetic untreated animals; while groups 3 and 4 were treated with carvedilol (1 and 10 mg/kg/d, orally, respectively). Group 5 received a-lipoic acid as a reference neuroprotective (100 mg/kg/d, orally). All treatments were continued for 45 days after diabetes induction, followed by behavioural tests. After sacrificing the animals, dorsal root ganglia, and sciatic nerves were collected for histopathological examination and biochemical assessments. Briefly, STZ administration caused cold allodynia, induced oxidative stress, and increased nerve growth factor (NGF) concentration. Nevertheless, carvedilol improved the behavioural tests, ameliorated the oxidative imbalance as manifested by reducing malondialdehyde, restoring glutathione content, and superoxide dismutase activity. Carvedilol also decreased NGF concentration in DRG homogenate. In conclusion, this study demonstrates the neuroprotective effect of carvedilol in an experimentally induced DN rat model through-at least partly-its antioxidant effect and reduced NGF concentration in DRG.

3.
J Mol Biol ; 430(21): 3942-3953, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30171839

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia worldwide. Mitochondrial abnormalities have been identified in many cell types in AD, with deficits preceding the development of the classical pathological aggregations. Ursodeoxycholic acid (UDCA), a treatment for primary biliary cirrhosis, improves mitochondrial function in fibroblasts derived from Parkinson's disease patients as well as several animal models of AD and Parkinson's disease. In this paper, we investigated both mitochondrial function and morphology in fibroblasts from patients with both sporadic and familial AD. We show that both sporadic AD (sAD) and PSEN1 fibroblasts share the same impairment of mitochondrial membrane potential and alterations in mitochondrial morphology. Mitochondrial respiration, however, was decreased in sAD fibroblasts and increased in PSEN1 fibroblasts. Morphological changes seen in AD fibroblasts include reduced mitochondrial number and increased mitochondrial clustering around the cell nucleus as well as an increased number of long mitochondria. We show here for the first time in AD patient tissue that treatment with UDCA increases mitochondrial membrane potential and respiration as well as reducing the amount of long mitochondria in AD fibroblasts. In addition, we show reductions in dynamin-related protein 1 (Drp1) level, particularly the amount localized to mitochondria in both sAD and familial patient fibroblasts. Drp1 protein amount and localization were increased after UDCA treatment. The restorative effects of UDCA are abolished when Drp1 is knocked down. This paper highlights the potential use of UDCA as a treatment for neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ácido Ursodesoxicólico/farmacología , Enfermedad de Alzheimer/etiología , Dinaminas , GTP Fosfohidrolasas/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Fenotipo , Presenilina-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...