Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microsc Microanal ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189873

RESUMEN

Atom probe tomography (APT) is commonly used to study solute clustering and precipitation in materials. However, standard techniques used to identify and characterize clusters within atom probe data, such as the density-based spatial clustering applications with noise (DBSCAN), often underperform with respect to small clusters. This is a limitation of density-based cluster identification algorithms, due to their dependence on the parameter Nmin, an arbitrary lower limit placed on detectable cluster sizes. Therefore, this article attempts to consider the characterization of clustering in atom probe data as an outlier detection problem of which k-nearest neighbors local outlier factor and learnable unified neighborhood-based anomaly ranking algorithms were tested against a simulated dataset and compared to the standard method. The decision score output of the algorithms was then auto thresholded by the Karcher mean to remove human bias. Each of the major models tested outperforms DBSCAN for cluster sizes of <25 atoms but underperforms for sizes >30 atoms using simulated data. However, the new combined k-nearest neighbors (k-NN) and DBSCAN method presented was able to perform well at all cluster sizes. The combined k-NN and seven methods are presented as a new approach to identifying clusters in APT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA