Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260255

RESUMEN

SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.

2.
Nat Commun ; 14(1): 4109, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433783

RESUMEN

Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders.


Asunto(s)
Trastornos del Neurodesarrollo , Neurogénesis , Complejo Represivo Polycomb 2 , Animales , Embrión de Pollo , Humanos , Diferenciación Celular/genética , Núcleo Celular , Cromatina/genética , Metiltransferasas , Trastornos del Neurodesarrollo/genética , Neurogénesis/genética , Complejo Represivo Polycomb 2/genética
3.
Brain ; 146(8): 3273-3288, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757831

RESUMEN

In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.


Asunto(s)
Distonía , Trastornos Distónicos , Malformaciones del Sistema Nervioso , Masculino , Humanos , Estudios Transversales , Mutación/genética , Fenotipo , Distonía/genética , Trastornos Distónicos/genética , Chaperonas Moleculares/genética
4.
J Clin Invest ; 132(20)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36006710

RESUMEN

CBL-B is an E3 ubiquitin ligase that ubiquitinates proteins downstream of immune receptors to downregulate positive signaling cascades. Distinct homozygous mutations in CBLB were identified in 3 unrelated children with early-onset autoimmunity, one of whom also had chronic urticaria. Patient T cells exhibited hyperproliferation in response to anti-CD3 cross-linking. One of the mutations, p.R496X, abolished CBL-B expression, and a second mutation, p.C464W, resulted in preserved CBL-B expression. The third mutation, p.H285L in the SH2 domain of CBL-B, was expressed at half the normal level in the patient's cells. Mice homozygous for the CBL-B p.H257L mutation, which corresponds to the patient's p.H285L mutation, had T and B cell hyperproliferation in response to antigen receptor cross-linking. CblbH257L mice had increased percentages of T regulatory cells (Tregs) that had normal in vitro suppressive function. However, T effector cells from the patient with the p.H285L mutation and CblbH257L mice were resistant to suppression by WT Tregs. Bone marrow-derived mast cells from CblbH257L mice were hyperactivated after FcεRI cross-linking, and CblbH257L mice demonstrated exaggerated IgE-mediated passive anaphylaxis. This study establishes CBL-B deficiency as a cause of immune dysregulation.


Asunto(s)
Receptores de IgE , Ubiquitina-Proteína Ligasas , Animales , Ratones , Inmunoglobulina E/genética , Mutación , Ubiquitina-Proteína Ligasas/genética , Humanos , Niño
5.
Nat Genet ; 54(8): 1214-1226, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35864190

RESUMEN

Cirrhosis is usually a late-onset and life-threatening disease characterized by fibrotic scarring and inflammation that disrupts liver architecture and function. While it is typically the result of alcoholism or hepatitis viral infection in adults, its etiology in infants is much less understood. In this study, we report 14 children from ten unrelated families presenting with a syndromic form of pediatric liver cirrhosis. By genome/exome sequencing, we found recessive variants in FOCAD segregating with the disease. Zebrafish lacking focad phenocopied the human disease, revealing a signature of altered messenger RNA (mRNA) degradation processes in the liver. Using patient's primary cells and CRISPR-Cas9-mediated inactivation in human hepatic cell lines, we found that FOCAD deficiency compromises the SKI mRNA surveillance pathway by reducing the levels of the RNA helicase SKIC2 and its cofactor SKIC3. FOCAD knockout hepatocytes exhibited lowered albumin expression and signs of persistent injury accompanied by CCL2 overproduction. Our results reveal the importance of FOCAD in maintaining liver homeostasis and disclose a possible therapeutic intervention point via inhibition of the CCL2/CCR2 signaling axis.


Asunto(s)
Cirrosis Hepática , Proteínas Supresoras de Tumor , Adulto , Animales , Niño , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Síndrome , Proteínas Supresoras de Tumor/genética , Pez Cebra/genética
6.
Ann Neurol ; 92(2): 304-321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35471564

RESUMEN

OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.


Asunto(s)
Apirasa , Discapacidad Intelectual , Paraplejía Espástica Hereditaria , Sustancia Blanca , Apirasa/genética , Disartria , Humanos , Discapacidad Intelectual/genética , Mutación/genética , Paraplejía/genética , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/genética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
7.
Genet Med ; 23(8): 1551-1568, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33875846

RESUMEN

PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.


Asunto(s)
Exoma , Discapacidad Intelectual , Secuencia de Bases , Exoma/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso , Fenotipo , Secuenciación del Exoma
8.
Eur J Hum Genet ; 29(1): 141-153, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32860008

RESUMEN

Despite clear technical superiority of genome sequencing (GS) over other diagnostic methods such as exome sequencing (ES), few studies are available regarding the advantages of its clinical application. We analyzed 1007 consecutive index cases for whom GS was performed in a diagnostic setting over a 2-year period. We reported pathogenic and likely pathogenic (P/LP) variants that explain the patients' phenotype in 212 of the 1007 cases (21.1%). In 245 additional cases (24.3%), a variant of unknown significance (VUS) related to the phenotype was reported. We especially investigated patients which had had ES with no genetic diagnosis (n = 358). For this group, GS diagnostic yield was 14.5% (52 patients with P/LP out of 358). GS should be especially indicated for ES-negative cases since up to 29.6% of them  could benefit from GS testing (14.5% with P/LP, n = 52 and 15.1% with VUS, n = 54). Genetic diagnoses in most of the ES-negative/GS-positive cases were determined by technical superiority of GS, i.e., access to noncoding regions and more uniform coverage. Importantly, we reported 79 noncoding variants, of which, 41 variants were classified as P/LP. Interpretation of noncoding variants remains challenging, and in many cases, complementary methods based on direct enzyme assessment, biomarker testing and RNA analysis are needed for variant classification and diagnosis. We present the largest cohort of patients with GS performed in a clinical setting to date. The results of this study should direct the decision for GS as standard second-line, or even first-line stand-alone test.


Asunto(s)
Secuenciación del Exoma/normas , Enfermedades Genéticas Congénitas/diagnóstico , Pruebas Genéticas/normas , Adolescente , Niño , Preescolar , Femenino , Frecuencia de los Genes , Enfermedades Genéticas Congénitas/epidemiología , Enfermedades Genéticas Congénitas/genética , Pruebas Genéticas/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Masculino , Diagnóstico Prenatal/normas , Diagnóstico Prenatal/estadística & datos numéricos , Sensibilidad y Especificidad , Secuenciación del Exoma/estadística & datos numéricos
9.
Am J Hum Genet ; 105(1): 213-220, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31230721

RESUMEN

De novo variants represent a significant cause of neurodevelopmental delay and intellectual disability. A genetic basis can be identified in only half of individuals who have neurodevelopmental disorders (NDDs); this indicates that additional causes need to be elucidated. We compared the frequency of de novo variants in patient-parent trios with (n = 2,030) versus without (n = 2,755) NDDs. We identified de novo variants in TAOK1 (thousand and one [TAO] amino acid kinase 1), which encodes the serine/threonine-protein kinase TAO1, in three individuals with NDDs but not in persons who did not have NDDs. Through further screening and the use of GeneMatcher, five additional individuals with NDDs were found to have de novo variants. All eight variants were absent from gnomAD (Genome Aggregation Database). The variant carriers shared a non-specific phenotype of developmental delay, and six individuals had additional muscular hypotonia. We established a fibroblast line of one mutation carrier, and we demonstrated that reduced mRNA levels of TAOK1 could be increased upon cycloheximide treatment. These results indicate nonsense-mediated mRNA decay. Further, there was neither detectable phosphorylated TAO1 kinase nor phosphorylated tau in these cells, and mitochondrial morphology was altered. Knockdown of the ortholog gene Tao1 (Tao, CG14217) in Drosophila resulted in delayed early development. The majority of the Tao1-knockdown flies did not survive beyond the third instar larval stage. When compared to control flies, Tao1 knockdown flies revealed changed morphology of the ventral nerve cord and the neuromuscular junctions as well as a decreased number of endings (boutons). Furthermore, mitochondria in mutant flies showed altered distribution and decreased size in axons of motor neurons. Thus, we provide compelling evidence that de novo variants in TAOK1 cause NDDs.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Exoma/genética , Mutación , Trastornos del Neurodesarrollo/etiología , Proteínas Serina-Treonina Quinasas/genética , Animales , Niño , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Heterocigoto , Humanos , Masculino , Trastornos del Neurodesarrollo/patología , Fenotipo , Secuenciación del Exoma
10.
J Community Genet ; 9(1): 65-70, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28914427

RESUMEN

Mucopolysaccharidosis (MPS VI) or Maroteaux-Lamy syndrome is an autosomal recessive lysosomal storage disease caused by deficiency of the enzyme N-acetylgalactosamine 4-sulfatase or arylsulfatase B. It is involved in the degradation of glycosaminoglycans and characterized by a wide spectrum of clinical and genetic heterogeneity. So far, more than 150 mutations have been reported in the ARSB gene. Most of these mutations are either novel, private, or compound heterozygous making phenotype-genotype correlation as well as population screening difficult. The aim of our study is to determine the genotypes and phenotypes of MPS VI among the Saudi population at the Eastern Province of Saudi Arabia. The clinical data of all the patients seen and diagnosed with MPS VI (Maroteaux-Lamy syndrome) at the main hospital from January 1, 1983, to December 31, 2016, were reviewed. A total of 18 patients from 6 unrelated consanguineous families (first-cousin parents) were diagnosed with MPS VI during the defined 33 years. All of the affected patients displayed the severe phenotype of MPS VI. Only one genotype (c.753C > Gp.Y251X) was identified among five of the studied families. All of those families were inhabitants of Al-Hofuf area, but they descended from different clans. A second genotype (c270_274del5bp pc.91Afs*34) was detected in a single family who had originated from Abha area (the southern-west region of the country). This report demonstrated the homogeneity for both phenotype and genotype of our studied patients with MPS VI. This may eventually make selective asymptomatic carrier test and newborn screening highly feasible in this region of country.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...