Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 25(7): 1393-1401, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30505187

RESUMEN

The effects of magnesium (Mg) supplementation on the growth performance, oxidative damage, DNA damage, and photosynthetic pigment synthesis, as well as on the activity level of carbonic anhydrase (CA), ribulose-1,5-bisphosphate carboxylase (Rubisco), and antioxidant enzymes were studied in Vicia faba L. plants exposed to heat stress (HS) and non-heat-stress (non-HS) conditions. Seeds were grown in pots containing a 1:1 mixture of sand and peat, with Mg treatments. The treatments consisted of (i) 0 Mg and non-HS (ambient temperature; control); (ii) 50 mM Mg; (iii) HS (38 °C); and (iv) 50 mM Mg and HS (38 °C). HS was imposed by placing potted plants in an incubator at 38 °C for 48 h. Growth attributes, total chlorophyll (Total Chl), and CA, and Rubisco activity decreased in plants subjected to HS, whereas accumulation of organic solutes [proline (Pro) and glycine betaine (GB)]; superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity; DNA damage; electrolyte leakage (EL); and malondialdehyde (MDA) and hydrogen peroxide (H2O2) content all increased. Application of Mg, however, significantly enhanced further proline (Pro), glycinebetaine (GB), SOD, POD, and CAT activity, and decreased DNA damage, EL, and MDA and H2O2 concentrations. These results suggest that adequate supply of Mg is not only essential for plant growth and development, but also improves plant tolerance to HS by suppressing cellular damage induced by reactive oxygen species through the enhancement of the accumulation of Pro and GB, and the actions of antioxidant enzymes.

2.
Saudi J Biol Sci ; 23(2): 243-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26981006

RESUMEN

Heat stress adversely affects the growth and yield of faba bean crop. Accumulation of ClpB/Hsp100 class of proteins is a critical parameter in induction of acquired heat stress tolerance in plants. Heat-induced expression of ClpB/Hsp100 genes has been noted in diverse plant species. Using primers complementary to soybean ClpB/Hsp100 gene, we analyzed the transcript expression profile of faba bean ClpB/Hsp100 gene in leaves of seedlings and flowering plants and in pollen grains. ClpB/Hsp100 protein accumulation profile was analyzed in leaves of faba bean seedlings using Arabidopsis thaliana cytoplasmic Hsp101 antibodies. The transcript and protein levels of faba bean ClpB/Hsp100 were significantly induced in response to heat stress.

3.
Saudi J Biol Sci ; 22(5): 656-63, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26288573

RESUMEN

Heat stress (HS) is the major constraint to crop productivity worldwide. The objective of the present experiment was to select the tolerant and sensitive genotype(s) on the basis of morpho-physiological and biochemical characteristics of ten Vicia faba genotypes. These genotypes were as follows: Zafar 1, Zafar 2, Shebam 1, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853. The experimental work was undertaken to study the effects of different levels of temperature (control, mild, and modest) on plant height (PH) plant(-1), fresh weight (FW) and dry weight (DW) plant(-1), area leaf(-1), content of leaf relative water (RWC), proline content (Pro) and total chlorophyll (Total Chl), electrolyte leakage (EL), malondialdehyde level (MDA), hydrogen peroxide (H2O2), and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) enzymes. HS significantly affected growth performance of all genotypes. However, the magnitude of reduction in genotypes 'C5' was relatively low, possibly due to its better antioxidant activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, 'C5' was noted to be the most HS tolerant and 'Espan' most HS sensitive genotypes. It was concluded that the heat-tolerant genotypes may have better osmotic adjustment and protection from free radicals by increasing the accumulation of Pro content with increased activities of antioxidant enzyme.

4.
Int J Mol Sci ; 16(5): 10214-27, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25950766

RESUMEN

Drought stress is one of the major abiotic stresses that are a threat to crop production worldwide. Drought stress impairs the plants growth and yield. Therefore, the aim of the present experiment was to select the tolerant genotype/s on the basis of moprpho-physiological and biochemical characteristics of 10 Vicia faba genotypes (Zafar 1, Zafar 2, Shebam, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853) under drought stress. We studied the effect of different levels of drought stress i.e., (i) normal irrigation (ii) mild stress (iii) moderate stress, and (iv) severe stress on plant height (PH) plant-1, fresh weight (FW) and dry weight (DW) plant-1, area leaf-1, leaf relative water content (RWC), proline (Pro) content, total chlorophyll (Total Chl) content, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) content, and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) of genotypes of faba bean. Drought stress reduced all growth parameters and Total Chl content of all genotypes. However, the deteriorating effect of drought stress on the growth performance of genotypes "C5" and "Zafar 1" were relatively low due to its better antioxidant enzymes activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, genotype "C5" and "Zafar 1" were found to be relatively tolerant to drought stress and genotypes "G853" and "C4" were sensitive to drought stress.


Asunto(s)
Sequías , Genotipo , Estrés Fisiológico , Vicia faba/genética , Catalasa/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Peroxidasa/metabolismo , Prolina/metabolismo , Superóxido Dismutasa/metabolismo , Vicia faba/metabolismo
5.
Plant Physiol Biochem ; 86: 100-108, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25438142

RESUMEN

Climate change is resulting in heightened incidences of plant heat stress episodes. Production of transgenic crops with enhanced heat stress tolerance is a highly desired agronomic trait for the sustainability of food production in 21st century. We review the current status of our understanding of the high temperature stress response of plants. We specifically deliberate on the progress made in altering levels of heat shock proteins (Hsp100, Hsp70/Hsp40 and sHsps), heat shock factors and specific metabolic proteins in improving plant tolerance to heat stress by transgenic approach.


Asunto(s)
Adaptación Fisiológica/genética , Cambio Climático , Clima , Productos Agrícolas/genética , Calor , Agricultura/métodos , Agricultura/tendencias , Biomasa , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Plantas Modificadas Genéticamente
6.
Environ Toxicol Chem ; 33(11): 2429-37, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25066835

RESUMEN

Research into nanotechnology, an emerging science, has advanced in almost all fields of technology. The aim of the present study was to evaluate the role of nano-silicon dioxide (nano-SiO2 ) in plant resistance to salt stress through improvement of the antioxidant system of squash (Cucurbita pepo L. cv. white bush marrow). Seeds treated with NaCl showed reduced germination percentage, vigor, length, and fresh and dry weights of the roots and shoots. However, nano-SiO2 improved seed germination and growth characteristics by reducing malondialdehyde and hydrogen peroxide levels as well as electrolyte leakage. In addition, application of nano-SiO2 reduced chlorophyll degradation and enhanced the net photosynthetic rate (Pn ), stomatal conductance (gs ), transpiration rate, and water use efficiency. The increase in plant germination and growth characteristics through application of nano-SiO2 might reflect a reduction in oxidative damage as a result of the expression of antioxidant enzymes, such as catalase, peroxidase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase. These results indicate that nano-SiO2 may improve defense mechanisms of plants against salt stress toxicity by augmenting the Pn , gs , transpiration rate, water use efficiency, total chlorophyll, proline, and carbonic anhydrase activity in the leaves of plants.


Asunto(s)
Cucurbita/efectos de los fármacos , Nanopartículas/química , Dióxido de Silicio/química , Antioxidantes/metabolismo , Ascorbato Peroxidasas/química , Catalasa/metabolismo , Clorofila/metabolismo , Cucurbita/metabolismo , Germinación/efectos de los fármacos , Peróxido de Hidrógeno/química , Malondialdehído/metabolismo , Oxígeno/química , Peroxidasas/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Salinidad , Semillas/metabolismo , Cloruro de Sodio/farmacología , Contaminantes del Suelo/química , Superóxido Dismutasa/metabolismo , Agua/metabolismo
7.
Saudi J Biol Sci ; 21(1): 13-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24596495

RESUMEN

Agricultural biotechnology is very familiar with the properties of nanomaterial and their potential uses. Therefore, the present experiment was conducted to test the beneficial effects of nanosilicon dioxide (nSiO2: size- 12 nm) on the seed germination of tomato (Lycopersicum esculentum Mill. cv Super Strain B). Application of nSiO2 significantly enhanced the characteristics of seed germination. Among the treatments, 8 g L(-1) of nSiO2 improved percent seed germination, mean germination time, seed germination index, seed vigour index, seedling fresh weight and dry weight. Therefore, it is very clear that nSiO2 has a significant impact on the seed germination potential. These findings could provide that alternative source for fertilizer that may improve sustainable agriculture.

8.
Int J Mol Sci ; 13(6): 6604-6619, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22837652

RESUMEN

Cadmium (Cd) in soil poses a major threat to plant growth and productivity. In the present experiment, we studied the effect of calcium (Ca(2+)) and/or potassium (K(+)) on the antioxidant system, accumulation of proline (Pro), malondialdehyde (MDA), and content of photosynthetic pigments, cadmium (Cd) and nutrients, i.e., Ca(2+) and K(+) in leaf of Vicia faba L. (cv. TARA) under Cd stress. Plants grown in the presence of Cd exhibited reduced growth traits [root length (RL) plant(-1), shoot length (SL) plant(-1), root fresh weight (RFW) plant(-1), shoot fresh weight (SFW) plant(-1), root dry weight (RDW) plant(-1) and shoot dry weight (SDW) plant(-1)] and concentration of Ca(2+), K(+), Chlorophyll (Chl) a and Chl b content, except content of MDA, Cd and (Pro). The antioxidant enzymes [peroxidase (POD) and superoxide dismutase (SOD)] slightly increased as compared to control under Cd stress. However, a significant improvement was observed in all growth traits and content of Ca(2+), K(+), Chl a, Chl b, Pro and activity of antioxidant enzymes catalase (CAT), POD and SOD in plants subjected to Ca(2+) and/or K(+). The maximum alleviating effect was recorded in the plants grown in medium containing Ca(2+) and K(+) together. This study indicates that the application of Ca(2+) and/or K(+) had a significant and synergistic effect on plant growth. Also, application of Ca(2+) and/or K(+) was highly effective against the toxicity of Cd by improving activity of antioxidant enzymes and solute that led to the enhanced plant growth of faba bean plants.


Asunto(s)
Antioxidantes/metabolismo , Cadmio/química , Calcio/química , Potasio/química , Vicia faba/metabolismo , Ambiente , Metales Pesados/química , Estrés Oxidativo , Peroxidasa/metabolismo , Fotosíntesis , Pigmentación , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Estrés Fisiológico , Superóxido Dismutasa/metabolismo
9.
Protoplasma ; 249(3): 769-78, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21979309

RESUMEN

Soil salinity is one of the important environmental factors that produce serious agricultural problems. The objective of the present study was to determine the interactive effect of salicylic acid (SA) and calcium (Ca) on plant growth, photosynthetic pigments, proline (Pro) concentration, carbonic anhydrase (CA) activity and activities of antioxidant enzymes of Triticum aestivum L. (cv. Samma) under salt stress. Application of 90 mM of NaCl reduced plant growth (plant height, fresh weight (FW) and dry weight (DW), chlorophyll (Chl) a, Chl b, CA activity) and enhanced malondialdehyde (MDA) and Pro concentration. However, the application of SA or Ca alone as well as in combination markedly improved plant growth, photosynthetic pigments, Pro concentration, CA activity and activities of antioxidant enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under salt stress. It was, therefore, concluded that application of SA and Ca alone as well as in combination ameliorated the adverse effect of salinity, while combined application proved more effective to reduce the oxidative stress generated by NaCl through reduced MDA accumulation, Chl a/b ratio and Chls degradation and enhanced activities of antioxidant enzymes.


Asunto(s)
Calcio/farmacología , Ácido Salicílico/farmacología , Tolerancia a la Sal/efectos de los fármacos , Triticum/efectos de los fármacos , Antioxidantes/metabolismo , Anhidrasas Carbónicas/metabolismo , Catalasa/metabolismo , Glutatión Reductasa/metabolismo , Peroxidación de Lípido , Malondialdehído/metabolismo , Estrés Oxidativo , Peroxidasas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Salinidad , Cloruro de Sodio/farmacología , Superóxido Dismutasa/metabolismo , Triticum/enzimología , Triticum/crecimiento & desarrollo
10.
Protoplasma ; 249(1): 139-53, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21479761

RESUMEN

In the present study, N and S assimilation, antioxidant enzymes activity, and yield were studied in N and S-treated plants of Brassica juncea (L.) Czern. & Coss. (cvs. Chuutki and Radha) under salt stress. The treatments were given as follows: (1) NaCl(90) mM+N(0)S(0) mg kg(-1) sand (control), (2) NaCl(90) mM+N(60)S(0) mg kg(-1) sand, (3) NaCl(90) mM+N(60)S(20) mg kg(-1) sand, (4) NaCl(90) mM+N(60)S(40) mg kg(-1) sand, and (5) NaCl(90) mM+N(60)S(60) mg kg(-1) sand. The combined application of N (60 mg kg(-1) sand) and S (40 mg kg(-1) sand) proved beneficial in alleviating the adverse effect of salt stress on growth attributes (shoot length plant(-1), fresh weight plant(-1), dry weight plant(-1), and area leaf(-1)), physio-biochemical parameters (carbonic anhydrase activity, total chlorophyll, adenosine triphosphate-sulphurylase activity, leaf N, K and Na content, K/Na ratio, activity of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase, and content of glutathione and ascorbate), and yield attributes (pods plant(-1), seeds pod(-1), and seed yield plant(-1)). Therefore, it is concluded that combined application of N and S induced the physiological and biochemical mechanisms of Brassica. The stimulation of antioxidant enzymes activity and its synergy with N and S assimilation may be one of the important mechanisms that help the plants to tolerate the salinity stress and resulted in an improved yield.


Asunto(s)
Planta de la Mostaza/efectos de los fármacos , Nitrógeno/farmacología , Cloruro de Sodio/farmacología , Estrés Fisiológico , Azufre/farmacología , Antioxidantes/metabolismo , Anhidrasas Carbónicas/metabolismo , Clorofila/metabolismo , Activación Enzimática , Genotipo , Glutatión/metabolismo , Planta de la Mostaza/enzimología , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/fisiología , Nitrito Reductasas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Potasio/metabolismo , Plantas Tolerantes a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/enzimología , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Plantas Tolerantes a la Sal/fisiología , Semillas/metabolismo , Semillas/fisiología , Superóxido Dismutasa/metabolismo
11.
Saudi J Biol Sci ; 18(2): 175-80, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23961121

RESUMEN

Exposure of heavy metals to human beings has risen dramatically in the last 50 years. In today's urban and industrial society, there is no escaping from exposure to toxic chemicals and heavy metals. Humans are more likely to be exposed to heavy metal contamination from the dust that adheres to edible plants than from bioaccumulation. This is because it is very difficult to wash off all the dust particles from the plant material before ingesting them. The objectives of this experiment were to determine the concentrations of lead (Pb) and cadmium (Cd) in washing residues and in the tissues of fruits of date palm growing in 14 sites of Riyadh and also to assess whether the fruits were safe for human consumption. The washing residues and tissue of date palm fruits collected from different sites showed the presence of significant amounts of the Pb and Cd. The concentration of Pb in the dust and fruit tissue increased with increasing anthropogenic sources. Therefore, fruits of date palm might be used as a pollution indicator; it might be recommend that fruits of date palm could be safe for human consumption after washing. The mean concentration of Pb and Cd in all the samples collected from different sites is within the safe limits recommended by FAO/WHO.

12.
Protoplasma ; 248(3): 503-11, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20730631

RESUMEN

Nickel toxicity affects many metabolic facets of plants and induces anatomical and morphological changes resulting in reduced growth and productivity. To overcome the damaging effects of nickel (Ni) stress, different strategies of the application of nutrients with plant hormones are being adopted. The present experiment was carried out to assess the growth and physiological response of wheat plant (Triticum aestivum L.) cv. Samma to pre-sowing seed treatment with GA(3) alone as well as in combination with Ca(2+) and/or Ni stress. The pre-sowing seed treatment of Ni decreased all the growth characteristics (plant height, root length, fresh, and dry weight) as well as chlorophyll (Chl) content and enzyme carbonic anhydrase (CA: E.C. 4.2.1.1) activity. However, an escalation was recorded in malondialdehyde content and electrolyte leakage in plants raised from seed soaked with Ni alone. Moreover, all the growth parameters and physiological attributes (Chl content, proline (Pro) content, CA, peroxidase (E.C.1.11.1.7), catalase (E.C. 1.11.1.6), superoxide dismutase (E.C. 1.15.1.1), ascorbate peroxidase (E.C. 1.11.1.11), and glutathione reductase (E.C. 1.6.4.2) were enhanced in the plants developed from the seeds soaked with the combination of GA(3) (10(-6) M), Ca(2+), and Ni. The present study showed that pre-sowing seed treatment of GA(3) with Ca(2+) was more capable in mitigation of adverse effect of Ni toxicity by improving the antioxidant system and Pro accumulation.


Asunto(s)
Antioxidantes/metabolismo , Calcio/farmacología , Giberelinas/metabolismo , Níquel/farmacología , Triticum/efectos de los fármacos , Interacciones Farmacológicas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Ucrania
13.
Protoplasma ; 248(3): 447-55, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20827494

RESUMEN

Nitric oxide (NO) has now gained significant place in plant science, mainly due to its properties (free radical, small size, no charge, short-lived, and highly diffusible across biological membranes) and multifunctional roles in plant growth, development, and regulation of remarkable spectrum of plant cellular mechanisms. In the last few years, the role of NO in tolerance of plants to abiotic stress has established much consideration. As it is evident from the present review, recent progress on NO potentiality in tolerance of plants to environmental stresses has been impressive. These investigations suggest that NO, itself, possesses antioxidant properties and might act as a signal in activating ROS-scavenging enzyme activities under abiotic stress. NO plays an important role in resistance to salt, drought, temperature (high and low), UV-B, and heavy metal stress. Rapidly increasing evidences indicate that NO is essentially involve in several physiological processes; however, there has been much disagreement regarding the mechanism(s) by which NO reduces abiotic stress.


Asunto(s)
Óxido Nítrico/metabolismo , Plantas/metabolismo , Estrés Fisiológico/fisiología , Antioxidantes/metabolismo , Fenómenos Fisiológicos de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA