Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 249: 118329, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325781

RESUMEN

Pollutant emissions from chemical plants are a major concern in the context of environmental safety. A reliable emission forecasting model can provide important information for optimizing the process and improving the environmental performance. In this work, forecasting models are developed for the prediction of SO2 emission from a Sulfur Recovery Unit (SRU). Since SRUs incorporate complex chemical reactions, first-principle models are not suitable to predict emission levels based on a given feed condition. Accordingly, artificial intelligence-based models such as standard machine learning (ML) algorithms, multi-layer perceptron (MLP), long short-term memory (LSTM), one-dimensional convolution (1D-CNN), and CNN-LSTM models were tested, and their performance was evaluated. The input features and hyperparameters of the models were optimized to achieve maximum performance. The performance was evaluated in terms of mean squared error (MSE) and mean absolute percentage Error (MAPE) for 1 h, 3 h and 5 h ahead of forecasting. The reported results show that the CNN-LSTM encoder-decoder model outperforms other tested models, with its superiority becoming more pronounced as the forecasting horizon increased from 1 h to 5 h. For the 5-h ahead forecasting, the proposed model showed a MAPE advantage of 17.23%, 4.41%, and 2.83%, respectively over the 1D-CNN, Deep LSTM, and single-layer LSTM models in the larger dataset.


Asunto(s)
Contaminantes Atmosféricos , Inteligencia Artificial , Predicción , Incineración , Dióxido de Azufre , Dióxido de Azufre/análisis , Predicción/métodos , Contaminantes Atmosféricos/análisis , Azufre/análisis , Modelos Teóricos , Monitoreo del Ambiente/métodos , Redes Neurales de la Computación , Aprendizaje Automático
2.
ACS Omega ; 8(33): 30247-30261, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636978

RESUMEN

An advanced form of magnesium-doped hydroxyapatite (Mg·HAP) was integrated in composite with ß-cyclodextrin producing a safe biocomposite (ß-CD/HAP) as an enhanced delivery structure of traditional 5-fluorouracil (5-FU) chemotherapy during the treatment stages of colorectal cancer cells. The qualifications of ß-CD/HAP as a carrier for 5-FU were followed based on the loading, release, and cytotoxicity as compared to Mg·HAP. ß-CD/HAP composite exhibits notably higher 5-FU encapsulation capacity (272.3 mg/g) than Mg·HAP phase (164.9 mg/g). The 5-FU encapsulation processes into ß-CD/HAP display the isotherm behavior of the Freundlich model (R2 = 0.99) and kinetic assumptions of pseudo-first order kinetic (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the ß-CD integration steps (Nm = 61.2 mg/g) as compared to pure Mg·HAP (Nm = 42.4 mg/g). Also, the capacity of each site was enhanced to be loaded by 5 of 5-FU molecules (n = 4.45) in a vertical orientation. The 5-FU encapsulation energy into ß-CD/HAP (<40 kJ/mol) reflects physical encapsulation reactions involving van der Waals forces and hydrogen bonding. The 5-FU release profiles of ß-CD/HAP exhibit slow and controlled properties for about 80 h either in gastric fluid (pH 1.2) or in intestinal fluid (pH 7.4). The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and complex erosion/diffusion release mechanism. The free ß-CD/HAP particles display a considerable cytotoxic effect on the HCT-116 cancer cells (33.62% cell viability) and its 5-FU-loaded product shows a strong cytotoxic effect (2.91% cell viability).

3.
ACS Omega ; 8(3): 3270-3277, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36713731

RESUMEN

Improved correlations among critical temperature, critical pressure, and acentric factor are developed for an extensive database of hydrocarbons. The correlations rely on measurements of molecular weight and refractive index at ambient conditions and utilize the concept of the aromatic ring index (ARI) recently developed by Abutaqiya et al. as a distinctive characterization factor for nonpolar hydrocarbons [Abutaqiya M. I. L.Aromatic Ring Index (ARI): A Characterization Factor for Nonpolar Hydrocarbons from Molecular Weight and Refractive Index. Energy Fuels2021, 35( (2), ), 1113-1119.]. The new correlations are then implemented for modeling the phase behavior of a variety of oils under miscible gas injection in a fully predictive manner using the Peng-Robinson equation of state (PR EOS). The results indicate that the proposed modeling framework yield accurate predictions for bubble pressure of oil/gas blends with an average absolute deviation of 6.4% for a wide variety of oils and injection gases including lean, rich, H2S, CO2, and N2. Additionally, an interesting crossover behavior in the phase envelope of live oils under CO2 injection is observed using PR EOS. This behavior has been previously reported in the literature for modeling results using PC-SAFT EOS and seems to be characteristic of CO2.

4.
ACS Omega ; 7(41): 36697-36711, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36278107

RESUMEN

Natural coal (N.C) was sulfonated with sulfuric acid by normal stirring (MS.C) and sonication waves (SS.C) to obtain -SO3H functionalized coal as enhanced adsorbents of malachite green dye (MG). The sulfonated products exhibit enhanced surface area (MS.C (27.2 m2/g) and SS.C (45.8 m2/g)) as compared to N.C. SS.C achieved higher acid density (14.2 mmol/g) and sulfur content (13.2 wt. %) as compared to MS.C. The impact of the sulfonation processes on the adsorption of MG was assessed based on the monolayer isotherm model of one energy. The MG Q sat of N.C (121.3 mg/g), MS.C (226.3 mg/g), and SS.C (296.4 mg/g) validate the significant effect of the sulfonation processes by the sonication waves. This is in agreement with the active site densities that reflect the saturation of SS.C by more active sites (180.74 mg/g) than MS.C (120.38 mg/g) and N.C (70.84 mg/g). The MS.C and SS.C can adsorb three MG molecules as compared to two molecules per site of N.C. The Gaussian energy (<8 kJ/mol) and adsorption energy (<40 kJ/mol)) reflects the physisorption of MG involving van der Waals forces, hydrogen bonding, and dipole bonding forces. The thermodynamic functions demonstrate the uptake of MG by exothermic, spontaneous, feasible reactions.

5.
J Environ Manage ; 300: 113723, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34521003

RESUMEN

Zeolite impeded geopolymer (Z/G) was synthesized from natural kaolinite and diatomite. The structure (Z/G) was characterized as an enhanced adsorbent for PO43- and NH4+ ions from aqueous solutions, groundwater, and sewage water. The synthetic Z/G structure exhibits sequestration capacities of 206 mg/g and 140 mg/g for PO43- and NH4+, respectively which are higher values than the recognized results for the geopolymer and other adsorbents in literature. The sequestration reactions of PO43- and NH4+ by Z/G are of Pseudo-Second order kinetic behavior considering both the Chi-squared (χ2) and correlation coefficient (R2) values. The sequestration reactions occur in homogenous and monolayer forms considering their agreement with Langmuir behavior. The Gaussian energies (12.4 kJ/mol (PO43-) and 10.47 kJ/mol (NH4+)) demonstrate the operation of a chemical sequestration mechanism that might be involved zeolitic ion exchange process and chemical complexation. Additionally, these reactions are exothermic processes of spontaneous and favorable properties based on thermodynamic studies. The Z/G structure is of significant affinity for both PO43- and NH4+ even in the existence of other anions as Cl-, HCO3-, SO42-, and NO3-. Finally, the structure used effectively in the purification of groundwater and sewage water from PO43- and NH4+ in addition to nitrate, sulfate, and some metal ions.


Asunto(s)
Compuestos de Amonio , Contaminantes Químicos del Agua , Zeolitas , Adsorción , Iones , Cinética , Fosfatos , Contaminantes Químicos del Agua/análisis
6.
ACS Omega ; 5(45): 29530-29537, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33225184

RESUMEN

Supercritical carbon dioxide (scCO2) has gained considerable attention in the process industry due to its favorable economic, environmental, and technical characteristics. Polymer processing is one of the key industrial applications where scCO2 plays an important role. In order to be able to efficiently design the polymer processing equipment, understanding the phase behavior and partition of solutes between scCO2 and polymers is necessary. This paper investigates the partitioning of acetone - a conventional polar cosolvent - between scCO2 and polystyrene - a glassy polymer. We highlight the importance of taking into account the polar interactions between acetone molecules and their role in the polymer phase behavior. The system is modeled under a wide range of temperatures and pressures (278.15-518.2 K and 1.0-20.0 MPa) using the polar version of the perturbed chain statistical associating fluid theory (polar PC-SAFT) equation of state. The results show that at relatively low pressure, the system exhibits a vapor-liquid-liquid (VLL) three-phase region bounded by two two-phase regions (VL and LL). At high pressure, VLL and VL regions disappear and only the LL region remains. The temperature effect is more interesting, showing a transition of upper critical solution temperature behavior to lower critical solution temperature behavior at 10 MPa and 398.15 K. It is found that neglecting the polar term can lead to significant changes in the description of the polymeric-system phase behavior especially at lower temperatures. No such differences are observed at higher temperatures (above 500 K) where the effect of polar interaction is considerably weaker.

7.
Sci Rep ; 10(1): 14828, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908234

RESUMEN

Novel MgO/CaO nanocomposite (MgO/CaO NRs) was synthesized by the hydrothermal method using diatomite porous frustules as a substrate under the microwave irradiation. The composite appeared as well crystalline rod-like nanoparticles with 52.3 nm as average particle size and 112.8 m2/g as BET surface area. The synthetic MgO/CaO NRs were addressed as a novel adsorbent for promising removal of levofloxacin (LVX) as pharmaceutical residuals. The adsorption studies revealed effective uptake of levofloxacin by MgO/CaO NRs with theoretical qmax of 106.7 mg/g and the equilibrium time of 720 min considering the best pH value (pH 7). The equilibrium studies highly fitted with the Langmuir model of monolayer adsorption considering the values of Chi-squared (χ2) and determination coefficient. The estimated adsorption energy from Dubinin-Radushkevich (0.2 kJ/mol) signifies physisorption mechanisms that might be coulombic attractive forces considering the kinetic studies. The thermodynamic addressing for the reactions verified their spontaneous and exothermic nature within a temperature range from 303 to 333 K. Additionally, the prepared MgO/CaO NRs show significant recyclability properties to be used in realistic remediation process and its uptake capacity is higher than several studied adsorbents in literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...