Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Genome Var ; 10(1): 7, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36810590

RESUMEN

Compound heterozygous mutations in SHQ1 have been associated with a rare and severe neurological disorder characterized by global developmental delay (GDD), cerebellar degeneration coupled with seizures, and early-onset dystonia. Currently, only five affected individuals have been documented in the literature. Here, we report three children from two unrelated families harboring a homozygous variant in the gene but with a milder phenotype than previously described. The patients had GDD and seizures. Magnetic resonance imaging analyses revealed diffuse white matter hypomyelination. Sanger sequencing confirmed the whole-exome sequencing results and revealed full segregation of the missense variant (SHQ1:c.833 T > C; p.I278T) in both families. We performed a comprehensive in silico analysis using different prediction classifiers and structural modeling of the variant. Our findings demonstrate that this novel homozygous variant in SHQ1 is likely to be pathogenic and leads to the clinical features observed in our patients.

2.
Hum Mutat ; 43(3): 403-419, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34989426

RESUMEN

Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan-Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals.


Asunto(s)
Epilepsia Generalizada , Microcefalia , Pirofosfatasas , Humanos , Inosina , Inosina Trifosfato , Microcefalia/patología , Mutación , Pronóstico , Pirofosfatasas/genética , Inosina Trifosfatasa
3.
Genes (Basel) ; 12(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34828389

RESUMEN

Congenital myopathies are rare neuromuscular hereditary disorders that manifest at birth or during infancy and usually appear with muscle weakness and hypotonia. One of such disorders, early-onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD, OMIM: 614399, MIM: 612453), is a rare autosomal recessive disorder caused by biallelic mutations (at homozygous or compound heterozygous status) in MEGF10 (multiple epidermal growth factor-like domains protein family). Here, we report two unrelated patients, who were born to consanguineous parents, having two novel MEGF10 deleterious variants. Interestingly, the presence of MEGF10 associated EMARDD has not been reported in Saudi Arabia, a highly consanguineous population. Moreover, both variants lead to a different phenotypic onset of mild and severe types. Our work expands phenotypic features of the disease and provides an opportunity for genetic counseling to the inflicted families.


Asunto(s)
Proteínas de la Membrana/genética , Miotonía Congénita/genética , Fenotipo , Preescolar , Consanguinidad , Humanos , Lactante , Masculino , Miotonía Congénita/patología , Linaje
4.
Brain ; 144(3): 769-780, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33764426

RESUMEN

Membrane trafficking is a complex, essential process in eukaryotic cells responsible for protein transport and processing. Deficiencies in vacuolar protein sorting (VPS) proteins, key regulators of trafficking, cause abnormal intracellular segregation of macromolecules and organelles and are linked to human disease. VPS proteins function as part of complexes such as the homotypic fusion and vacuole protein sorting (HOPS) tethering complex, composed of VPS11, VPS16, VPS18, VPS33A, VPS39 and VPS41. The HOPS-specific subunit VPS41 has been reported to promote viability of dopaminergic neurons in Parkinson's disease but to date has not been linked to human disease. Here, we describe five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function.


Asunto(s)
Ataxia Cerebelosa/genética , Predisposición Genética a la Enfermedad/genética , Trastornos del Neurodesarrollo/genética , Transporte de Proteínas/genética , Proteínas de Transporte Vesicular/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Variación Genética , Humanos , Masculino , Linaje , Adulto Joven , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...