Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Technol ; 40(18): 2400-2415, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29451094

RESUMEN

This work demonstrated the synthesis of carbon nanotubes (CNTs) on powder activated carbon (PAC) impregnated with Ni-catalyst through chemical vapour deposition. The optimized effects of reaction temperature, time and feedstock flow rates on CNT growth were examined. Potassium permanganate (KMnO4) and potassium permanganate in acidic solution (KMnO4/H2SO4) were used to functionalize CNTs samples. A primary screening of methylene blue (MB) adsorption was conducted. The chemical, physical and morphological properties of the adsorbent with the highest removal efficiency were investigated using FESEM, EDX, TEM, BET surface area, RAMAN, TGA, FTIR, and zeta potential. The resulting carbon nanotube-loaded activated carbons possessed abundant pore structure and large surface area. The MB removal by the as-synthesized CNTs was more remarkable than that by the modified samples. Adsorption studies were carried out to evaluate the optimum conditions, kinetics and isotherms for MB adsorption process. The response surface methodology-central composite design (RSM-CCD) was used to optimize the adsorption process parameters, including pH, adsorbent dosage and contact time. The investigation of the adsorption behaviour demonstrated that the adsorption was well fitted with the pseudo-second-order model and Langmuir isotherm with the maximum monolayer adsorption capacity of 174.5 mg/g. Meanwhile, the adsorption of MB onto adsorbent was driven by the electrostatic attraction and π-π interaction. Moreover, the as-obtained CNT-PAC exhibited good reusability after four repeated operations. In view of these empirical findings, the low-cost CNT-PAC has potential for removal of MB from aqueous solution.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cinética , Azul de Metileno , Agua
2.
Water Sci Technol ; 77(5-6): 1714-1723, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29595174

RESUMEN

In this study, carbon species were grown on the surface of Ni-impregnated powder activated carbon to form a novel hybrid carbon nanomaterial by chemical vapor deposition. The carbon nanomaterial was obtained by the precipitation of the methane elemental carbon atoms on the surface of the Ni catalyst. The physiochemical properties of the hybrid material were characterized to illustrate the successful growth of carbon species on the carbon substrate. The response surface methodology was used for the evaluation of adsorption parameters effect such as pH, adsorbent dose and contact time on the percentage removal of MB dye from aqueous solution. The optimum conditions were found to be pH = 11, adsorbent dose = 15 mg and contact time of 120 min. The material we prepared showed excellent removal efficiency of 96% for initial MB concentration of 50 mg/L. The adsorption of MB was described accurately by the pseudo-second-order model with R2 of 0.998 and qe of 163.93 (mg/g). The adsorption system showed the best agreement with Langmuir model with R2 of 0.989 and maximum adsorption capacity (Qm) of 250 mg/g.


Asunto(s)
Carbono/química , Azul de Metileno/química , Nanoestructuras/química , Contaminantes Químicos del Agua/química , Adsorción , Carbón Orgánico/química , Concentración de Iones de Hidrógeno , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA