Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Adv Pharm Technol Res ; 15(1): 1-7, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389974

RESUMEN

Type 2 diabetes is common globally. Pioglitazone (PGZ) is an oral TZD antidiabetic, whereas chromium-picolinate (Cr-PL) and Cr-glucose tolerance factor (Cr-GTF) are useful type 2 diabetes mellitus (T2DM) supplements. Cr-PL/GTF antioxidants cure T2DM. They may fail in diabetes with or without insulin-sensitizing medications. It examined how Cr-PL, Cr-GTF, PGZ, and their combination affected glucose, glycosylated hemoglobin, insulin, and HOMA-IR. Sixty-three adult Sprague-Dawley rats (220-300 g) were selected, and nine rats were randomly assigned to a normal nondiabetic group. In contrast, 54 rats were randomly split into 9 rats per each of the 6 major groups and injected intraperitoneally with 40 mg/kg STZ to induce T2DM. Rats were administered PGZ = 0.65 mg/kg (rat weight)/day, Cr-PL = 1 mg/kg, Cr-GTF = 1 mg/kg, and their combinations (PGZ + Cr-PL and Cr-GTF) daily for 6 weeks per intervention. The PGZ + Cr-PL and PGZ + Cr-GTF groups had substantially lower insulin levels than the PGZ group (13.38 ± 0.06, 12.98 ± 0.19 vs. 14.11 ± 0.02, respectively), with the PGZ + Cr-GTF group having the lowest insulin levels (12.98 ± 0.19 vs. 14.11 ± 0.02, 13.38±0.06, respectively). Intervention substantially reduced HOMA-IR in the PZ + Cr-PL and PZ + Cr-GTF groups compared to PGZ (7.49 ± 0.04, 6.69 ± 0.11 vs. 8.37 ± 0.04, respectively). This research found that combining PGZ with Cr-GTF resulted in considerably lower HOMA-IR levels than the PGZ and Cr-PL groups (6.69 ± 0.11 vs. 8.37 ± 0.04, 7.49 ± 0.04, respectively). Both Cr-PL and Cr-GTF may control T2DM. Both Cr complexes improved T2DM biomarkers more than the control diabetic group without medication. PGZ alone and PGZ + Cr-PL had less pharmacological synergy than Cr-GTF and PGZ in altering insulin and HOMA-IR blood levels. These encouraging discoveries need more study.

2.
J Popul Ther Clin Pharmacol ; 29(4): e202-e210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36579951

RESUMEN

Anti-diabetic therapies possess many side effects; thus, searching for alternative strategies with low cost, minimal side effects, and high therapeutic value is very important. The present study aimed to explore the combined use of selenium yeast (SY) and standard anti-diabetic drug pioglitazone (PGZ) for diabetes mellitus (DM) treatment in streptozotocin (STZ)-induced DM. STZ was injected daily intraperitoneally with a low dose (40 mg/kg) into Sprague-Dawley rats to induce DM. The synergistic effect of the SY (0.2 mg/kg) and PGZ (0.65 mg/kg) on DM complications was evaluated after 88 weeks of treatment. The impact of our medication on glucose levels, insulin sensitivity, lipid abnormalities, oxidative mediators, and inflammatory markers was assessed by biochemical techniques. STZ-induced diabetes has toxic effects, including toxic hepatic tissues, lipid disturbances, massive oxidative damage, and hyperinflammation. Experimental rats either treated with monotherapy alone or combined therapy resulted in a significant anti-diabetic effect. The PGZ+ SY combination has the best effect, as illustrated by significant (P < 0.05) decreases in fasting blood glucose, (FBG) insulin, HbA1c, and HOMA-IR levels. This combination attenuated (P < 0.05) lipid disturbances and their associated elevated atherogenicity biomarkers. At the same time, treatments with PGZ+ SY exhibited an anti-inflammatory effect as they ameliorated the increase in inflammatory parameters (CRP, TNF-α, IL-6). Also, it restored the total antioxidant capacity and peroxisome proliferator-activated receptor (PPARƔ) levels that were decreased by STZ-DM induction. In conclusion, this study finds PGZ+ SY as a promising DM therapeutic alternative. This synergistic combination alleviates most DM-related complications and insulin resistance.


Asunto(s)
Diabetes Mellitus Experimental , Resistencia a la Insulina , Selenio , Ratas , Humanos , Animales , Pioglitazona/uso terapéutico , Selenio/uso terapéutico , Saccharomyces cerevisiae , Estreptozocina/uso terapéutico , Ratas Sprague-Dawley , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Lípidos/uso terapéutico , Hipoglucemiantes/farmacología , Glucemia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA