Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38761209

RESUMEN

The defect in the hepatobiliary transport system results in an impairment of bile flow, leading to accumulation of toxic compounds with subsequent liver disorders. Vincamine, a plant indole alkaloid that is utilized as a dietary supplement, has been known for its promising pharmacological activities. For the first time, the present study was planned to estimate, at the molecular level, the potentiality of vincamine against alfa-naphthyl isothiocyanate (ANIT)-induced hepatic cholestasis. Liver function tests were analyzed. Hepatic activity of SOD and levels of GSH and MDA were assessed. Hepatic contents of bax, bcl2, NF-kB, PPARγ, catalase, heme-oxygenase-1, NTCP, and BSEP were evaluated using ELISA. mRNA levels of NF-kB, IL-1ß, IL-6, TNFα, PDGF, klf6, PPARγ, and P53 were examined using qRT-PCR. PI3K, Akt and cleaved caspase-3 proteins were assessed using western blotting. Histopathological analyses were performed using hematoxylin & eosin staining. ANIT-induced hepatic cholestasis elevated liver function tests, including AST, ALT, GGT, ALP, and total bilirubin. ANIT reduced the protein expression of NTCP and BSEP hepatic transporters. It induced the expression of the inflammatory genes, TNFα, IL-6, IL-1ß, and PDGF, and the expression of NF-kB at the genetic and protein level and suppressed the anti-inflammatory genes, klf6 and PPARγ. Also, antioxidant markers were reduced during ANIT induction such as GSH, SOD, catalase, heme-oxygenase-1 and PI3K/Akt pathway, while MDA levels were elevated. Furthermore, the expression of P53 gene, bax and cleaved caspase 3 proteins were activated, while bcl2 was inhibited. Also, the histopathological analysis showed degeneration of hepatocytes and inflammatory cellular infiltrates. However, vincamine treatment modulated all these markers. It improved liver function tests. It inhibited the expression of NF-kB, TNFα, IL-6, IL-1ß and PDGF and activated the expression of klf6 and PPARγ. Furthermore, vincamine reduced MDA levels and induced GSH, SOD, catalase, heme-oxygenase-1 and PI3K/Akt pathway. Additionally, it inhibited expression of P53 gene, bax and cleaved caspase 3 proteins. More interestingly, vincamine showed better outcomes on the hepatic histopathological analysis and improved the alterations induced by ANIT. Vincamine alleviated hepatic dysfunction during ANIT-induced intrahepatic cholestasis through its anti-inflammatory and antioxidant efficacies by the modulation of NF-kB/PDGF/klf6/PPARγ and PI3K/Akt pathways.

2.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798338

RESUMEN

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.

3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 947-958, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37548662

RESUMEN

PURPOSE: Globally, sepsis, which is a major health issue resulting from severe infection-induced inflammation, is the fifth biggest cause of death. This research aimed to evaluate, for the first time, the molecular effects of gabapentin's possible nephroprotective potential on septic rats by cecal ligation and puncture (CLP). METHODS: Sepsis was produced by CLP in male Wistar rats. Evaluations of histopathology and renal function were conducted. MDA, SOD, GSH, TNF-α, IL-1ß, and IL-6 levels were measured. qRT-PCR was utilized to determine the expression of Bax, Bcl-2, and NF-kB genes. The expression of Nrf-2 and HO-1 proteins was examined by western blotting. RESULTS: CLP caused acute renal damage, elevated the blood levels of creatinine, BUN, TNF-α, IL-1ß, and IL-6, reduced the expression of Nrf-2 and HO-1 proteins and the Bcl-2 gene expression, and upregulated NF-kB and Bax genes. Nevertheless, gabapentin dramatically diminished the degree of the biochemical, molecular, and histopathological alterations generated by CLP. Gabapentin reduced the levels of proinflammatory mediators and MDA, improved renal content of GSH and SOD, raised the expression of Nrf-2 and HO-1 proteins and Bcl-2 gene, and reduced the renal expression of NF-kB and Bax genes. CONCLUSION: Gabapentin mitigated the CLP-induced sepsis-related acute kidney injury through up-regulating Nrf-2/HO-1 pathway, repressing apoptosis, and attenuating the oxidative stress status by reducing the levels of the proinflammatory mediators and enhancing the antioxidant status.


Asunto(s)
Lesión Renal Aguda , Sepsis , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Gabapentina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Interleucina-6/metabolismo , Ratas Wistar , Transducción de Señal , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Estrés Oxidativo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Superóxido Dismutasa/metabolismo
4.
Life Sci ; 334: 122210, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37883863

RESUMEN

AIM: Sepsis is a serious inflammatory response to infection with an annual incidence rate of >48 million cases and 11 million fatalities worldwide. Furthermore, sepsis remains the world's fifth-greatest cause of death. For the first time, the current study aims to evaluate the possible hepatoprotective benefits of LCZ696, a combination of an angiotensin receptor blocker (valsartan) and a neprilysin inhibitor prodrug (sacubitril), on cecal ligation and puncture (CLP)-induced sepsis in rats. MAIN METHODS: CLP was employed to induce sepsis. Hepatic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), interleukin-6 (IL-6), IL-1ß, tumor necrosis factor-alpha (TNF-α), and caspase 3 were assessed using ELISA. Serum alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Western blot assay was used to determine the expression of JNK1/2 and P38 proteins. The histology of liver tissues was also examined. KEY FINDINGS: CLP resulted in significant elevation of AST, ALT, MDA, IL-6, IL-1ß, TNF-α, and caspase 3 levels, and up-regulation of p/t JNK1/2, and p/t P38 proteins, as compared to the sham group. However, level of GSH, and SOD activity were reduced in CLP group. LCZ696 significantly improved all the previously mentioned biochemical and histological abnormalities better than using valsartan alone. SIGNIFICANCE: LCZ696 substantially ameliorated CLP-induced liver damage, compared to valsartan, by reducing proinflammatory mediators, inhibiting the JNK1/2 and P38 signaling pathway, and attenuating apoptosis.


Asunto(s)
Hepatopatías , Sepsis , Animales , Ratas , Apoptosis , Caspasa 3 , Interleucina-6 , Estrés Oxidativo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Transducción de Señal , Superóxido Dismutasa , Factor de Necrosis Tumoral alfa , Valsartán/farmacología , Valsartán/uso terapéutico
5.
Molecules ; 28(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37375218

RESUMEN

Idiopathic pulmonary fibrosis is a progressive, irreversible lung disease that leads to respiratory failure and death. Vincamine is an indole alkaloid obtained from the leaves of Vinca minor and acts as a vasodilator. The present study aims to investigate the protective activity of vincamine against EMT in bleomycin (BLM)-induced pulmonary fibrosis via assessing the apoptotic and TGF-ß1/p38 MAPK/ERK1/2 signaling pathways. In bronchoalveolar lavage fluid, protein content, total cell count, and LDH activity were evaluated. N-cadherin, fibronectin, collagen, SOD, GPX, and MDA levels were determined in lung tissue using ELISA. Bax, p53, bcl2, TWIST, Snai1, and Slug mRNA levels were examined using qRT-PCR. Western blotting was used to assess the expression of TGF-ß1, p38 MAPK, ERK1/2, and cleaved caspase 3 proteins. H & E and Masson's trichrome staining were used to analyze histopathology. In BLM-induced pulmonary fibrosis, vincamine reduced LDH activity, total protein content, and total and differential cell count. SOD and GPX were also increased following vincamine treatment, while MDA levels were decreased. Additionally, vincamine suppressed the expression of p53, Bax, TWIST, Snail, and Slug genes as well as the expression of factors such as TGF-ß1, p/t p38 MAPK, p/t ERK1/2, and cleaved caspase 3 proteins, and, at the same time, vincamine increased bcl2 gene expression. Moreover, vincamine restored fibronectin, N-Catherine, and collagen protein elevation due to BLM-induced lung fibrosis. In addition, the histopathological examination of lung tissues revealed that vincamine attenuated the fibrotic and inflammatory conditions. In conclusion, vincamine suppressed bleomycin-induced EMT by attenuating TGF-ß1/p38 MAPK/ERK1/2/TWIST/Snai1/Slug/fibronectin/N-cadherin pathway. Moreover, it exerted anti-apoptotic activity in bleomycin-induced pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Vincamina , Ratas , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Bleomicina/efectos adversos , Factor de Crecimiento Transformador beta1/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Caspasa 3/metabolismo , Transición Epitelial-Mesenquimal , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Pulmón/metabolismo , Colágeno/metabolismo , Superóxido Dismutasa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Metabolites ; 13(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37367890

RESUMEN

Tamarindus indica Linn (tamarind, F. Leguminosae) is one of the most widely consumed edible fruits in the world. Phytochemical investigation of tamarind pulp n-butanol fraction yielded one new (+)-pinitol glycoside compound 1 (25% w/w), and 1D, 2D NMR, and HRESIMS investigation were used to confirm the new compound's structure. (+)-Pinitol glycoside showed anti-Alzheimer potential that was confirmed in prophylactic and treatment groups by decreasing time for the T-maze test; decreased TAO, brain and serum AChE, MDA, tau protein levels, and ß amyloid peptide protein levels; and increasing GPX, SOD levels, and in vivo regression of the neurodegenerative features of Alzheimer's dementia in an aluminum-intoxicated rat model. The reported molecular targets for human Alzheimer's disease were then used in a network pharmacology investigation to examine their complex interactions and identify the key targets in the disease pathogenesis. An in silico-based analysis (molecular docking, binding free energy calculation (ΔGBinding), and molecular dynamics simulation) was performed to identify the potential targets for compound 1. The findings of this study may lead to the development of dietary supplements for the treatment of Alzheimer's disease.

7.
Life Sci ; 320: 121562, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907325

RESUMEN

AIMS: Sepsis is a severe inflammatory response to infection with an incidence rate exceeding 48 million cases and 11 million sepsis-related deaths yearly. Furthermore, sepsis remains the fifth most common cause of death worldwide. The present study aimed to examine, for the first time, the potential hepatoprotective activity of gabapentin on cecal ligation and puncture (CLP)-induced sepsis in rats at the molecular level. MAIN METHODS: CLP was used as a model of sepsis in male Wistar rats. Histological examination and liver functions were evaluated. Levels of MDA, GSH, SOD, IL-6, IL-1ß, and TNF-α were investigated using ELISA. mRNA levels of Bax, Bcl-2, and NF-kB were assessed by qRT-PCR. Western blotting investigated the expression of ERK1/2, JNK1/2, and cleaved caspase 3 proteins. KEY FINDINGS: CLP resulted in liver damage, elevated serum levels of ALT, AST, ALP, MDA, TNF-α, IL-6, and IL-1ß, increased expression of ERK1/2, JNK1/2, and cleaved caspase 3 proteins, and upregulated Bax and NF-κB genes expression while it down-regulated Bcl-2 gene expression. However, gabapentin treatment significantly reduced the severity of CLP-induced biochemical, molecular, and histopathological changes. Gabapentin attenuated the levels of the proinflammatory mediators, decreased the expression of JNK1/2, ERK1/2, and cleaved caspase 3 proteins, suppressed Bax and NF-κB genes expression and increased the expression of the Bcl-2 gene. SIGNIFICANCE: Consequently, Gabapentin reduced hepatic injury resulting from CLP-induced sepsis by reducing proinflammatory mediators, attenuating apoptosis, and inhibiting the intracellular MAPK (ERK1/2, JNK1/2)-NF-kB signaling pathway.


Asunto(s)
FN-kappa B , Sepsis , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Caspasa 3/metabolismo , Gabapentina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Sistema de Señalización de MAP Quinasas , Interleucina-6/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Ratas Wistar , Transducción de Señal , Estrés Oxidativo , Punciones , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/genética , Apoptosis
8.
Cells ; 12(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36611978

RESUMEN

Renal ischemia/reperfusion (IR) injury is characterized by an unexpected impairment of blood flow to the kidney. Azilsartan is an angiotensin receptor blocker that is approved for the management of hypertension. The present study aimed to investigate, on molecular basics, the nephroprotective activity of azilsartan on renal IR injury in rats. Rats were assigned into four groups: (1) Sham group, (2) Azilsartan group, (3) IR group, and (4) IR/Azilsartan-treated group. Histological examination and renal function were evaluated. Levels of KIM-1, HMGB1, caspase 3, GPX, SOD, NF-κB, and p53 proteins were investigated using ELISA. mRNA levels of IL-1ß, IL6, IL10, TNF-α, NF-κB, p53, and bax were assessed by qRT-PCR. Expression of p38, JNK, and ERK1/2 proteins was investigated by Western blotting. IR injury resulted in tissue damage, elevation of creatinine, BUN, KIM-1, HMGB1, caspase 3, NF-κB, and p53 levels, decreasing GPX and SOD activities, and up-regulation of NF-κB, IL-1ß, IL6, TNF-α, p53, and bax genes. Furthermore, it up-regulated the expression of phosphorylated/total ratio of p38, ERK1/2, and JNK proteins. Interestingly, treatment of the injured rats with azilsartan significantly alleviated IR injury-induced histopathological and biochemical changes. It reduced the creatinine, BUN, KIM-1, HMGB1, caspase-3, NF-κB, and p53 levels, elevated GPX and SOD activities, down-regulated the expression of NF-κB, IL-1ß, IL6, TNF-α, p53, and bax genes, and up-regulated IL10 gene expression. Furthermore, it decreased the phosphorylated/total ratio of p38, ERK1/2, and JNK proteins. Azilsartan exhibited nephroprotective activity in IR-injured rats via its antioxidant effect, suppression of inflammation, attenuation of apoptosis, and inhibition of HMGB1/NF-κB/p38/ERK1/2/JNK signaling pathway.


Asunto(s)
Proteína HMGB1 , Daño por Reperfusión , Ratas , Animales , FN-kappa B/metabolismo , Caspasa 3/metabolismo , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína HMGB1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Creatinina/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Riñón , Daño por Reperfusión/metabolismo , Apoptosis , Superóxido Dismutasa/metabolismo
9.
Metabolites ; 12(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36557216

RESUMEN

LC-HRESIMS metabolomic profiling of Olea europaea L. cv. Picual (OEP) (Saudi Arabian olive cultivar, F. Oleacea) revealed 18 compounds. Using pharmacology networking to specify the targets of the identified compounds with a relationship to Alzheimer's disease, it was possible to identify the VEGFA, AChE, and DRD2 genes as the top correlated genes to Alzheimer's disease with 8, 8, and 6 interactions in the same order. The mechanism of action on cellular components, biological processes, and molecular functions was determined by gene enrichment analysis. A biological pathway comparison revealed 13 shared pathways between the identified genes and Alzheimer protein genes (beta-amyloid band tau proteins). The suggested extract's anti-Alzheimer potential in silico screening was confirmed through in vivo investigation in regressing the neurodegenerative features of Alzheimer's dementia in an aluminum-intoxicated rat model (protective and therapeutic effects, 100 mg/kg b.w.). In vivo results suggested that OEP extract significantly improved Alzheimer's rats, which was indicated by the crude extract's ability to improve T-maze performance; lower elevated serum levels of AChE, AB peptide, and Ph/T ratio; and normalize the reduced level of TAC during the study. The results presented in this study may provide potential dietary supplements for the management of Alzheimer's disease.

10.
Molecules ; 27(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36431925

RESUMEN

Metastatic breast cancer is an incurable form of breast cancer that exhibits high levels of epithelial-mesenchymal transition (EMT) markers. Angiotensin II has been linked to various signaling pathways involved in tumor cell growth and metastasis. The aim of this study is to investigate, for the first time, the anti-proliferative activity of azilsartan, an angiotensin II receptor blocker, against breast cancer cell lines MCF-7 and MDA-MB-231 at the molecular level. Cell viability, cell cycle, apoptosis, colony formation, and cell migration assays were performed. RT-PCR and western blotting analysis were used to explain the molecular mechanism. Azilsartan significantly decreased the cancer cells survival, induced apoptosis and cell cycle arrest, and inhibited colony formation and cell migration abilities. Furthermore, azilsartan reduced the mRNA levels of NF-kB, TWIST, SNAIL, SLUG and bcl2, and increased the mRNA level of bax. Additionally, azilsartan inhibited the expression of IL-6, JAK2, STAT3, MMP9 and bcl2 proteins, and increased the expression of bax, c-PARP and cleaved caspase 3 protein. Interestingly, it reduced the in vivo metastatic capacity of MDA-MBA-231 breast cancer cells. In conclusion, the present study revealed, for the first time, the anti-proliferative, apoptotic, anti-migration and EMT inhibition activities of azilsartan against breast cancer cells through modulating NF-kB/IL-6/JAK2/STAT3/MMP9, TWIST/SNAIL/SLUG and apoptosis signaling pathways.


Asunto(s)
Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Humanos , Femenino , FN-kappa B/metabolismo , Interleucina-6/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Línea Celular Tumoral , ARN Mensajero , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
11.
Molecules ; 27(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36432094

RESUMEN

Fluoroquinolones (FQs) are synthetic broad-spectrum antimicrobial agents that have been recently repurposed to anticancer candidates. Designing new derivatives of FQs with different moieties to target DNA topoisomerases could improve their anticancer efficacy. The present study aimed to synthesize a novel ciprofloxacin derivative, examine its anticancer activity against HepG2 and A549 cancer cells, and investigate the possible molecular mechanism underlying this activity by examining its ability to inhibit the topo I/II activity and to induce the apoptotic and necro-apoptotic pathways. Molecular docking, cell viability, cell migration, colony formation, cell cycle, Annexin V, lactate dehydrogenase (LDH) release, ELISA, and western blotting assays were utilized. Molecular docking results showed that this novel ciprofloxacin derivative exerted dual topo I and topo II binding and inhibition. It significantly inhibited the proliferation of A549 and HepG2 cancer cells and decreased their cell migration and colony formation abilities. In addition, it significantly increased the % of apoptotic cells, caused cell cycle arrest at G2/M phase, and elevated the LDH release levels in both cancer cells. Furthermore, it increased the expression of cleaved caspase 3, RIPK1, RIPK3, and MLKL proteins. This novel ciprofloxacin derivative exerted substantial dual inhibition of topo I/II enzyme activities, showed antiproliferative activity, suppressed the cell migration and colony formation abilities for A549 and HepG2 cancer cells and activated the apoptotic pathway. In addition, it initiated another backup deadly pathway, necro-apoptosis, through the activation of the RIPK1/RIPK3/MLKL pathway.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Neoplasias , Apoptosis , Ciprofloxacina/farmacología , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Quinasas/metabolismo
12.
Curr Issues Mol Biol ; 44(7): 2967-2981, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35877429

RESUMEN

Inflammation is a critical defensive mechanism mainly arising due to the production of prostaglandins via cyclooxygenase enzymes. This study aimed to examine the anti-inflammatory activity of fatty acid glucoside (FAG), which is isolated from Ficus benghalensis against lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The cytotoxic activity of the FAG on RAW 264.7 macrophages was evaluated with an MTT assay. The levels of PGE2 and NO and the activity of iNOS, COX-1, and COX-2 enzymes in LPS-stimulated RAW 264.7 cells were evaluated. The gene expression of IL-6, TNF-α, and PGE2 was investigated by qRT-PCR. The expression of epidermal growth factor receptor (EGFR), Akt, and PI3K proteins was examined using Western blotting analysis. Furthermore, molecular docking of the new FAG against EGFR was investigated. A non-cytotoxic concentration of FAG increased NO release and iNOS activity, inhibited COX-1 and COX-2 activities, and reduced PGE2 levels in LPS-stimulated RAW 264.7 cells. It diminished the expression of TNF-α, IL-6, PGE2, EGFR, Akt, and PI3K. Furthermore, the molecular docking study proposed the potential direct binding of FAG with EGFR with a high affinity. This study showed that FAG is a natural EGFR inhibitor, NO-releasing, and COX-inhibiting anti-inflammatory agent via EGFR/Akt/PI3K pathway inhibition.

13.
Food Funct ; 13(13): 6859-6874, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35698869

RESUMEN

Ischemia is a deadly disease featured by restricted perfusion to different organs in the body. An increase in the accumulation of reactive oxygen species and cell debris is the driving force for inducing many oxidative, inflammatory and apoptotic signaling pathways. However, the number of therapeutics existing for ischemic stroke patients is limited and there is insufficient data on their efficiency, which warrants the search for novel therapeutic candidates from natural sources. Herein, a comprehensive survey was done on the reported functional food bioactives (ca. 152 compounds) to manage or protect against health consequences of myocardial and cerebral ischemia. Furthermore, we reviewed the reported mechanistic studies for their anti-ischemic potential. Subsequently, network pharmacology- and in silico-based studies were conducted using the reported myocardial and cerebral ischemia-relevant molecular targets to study their complex interactions and highlight key targets in disease pathogenesis. Subsequently, the most prominent 20 compounds in the literature were used in a comprehensive in silico-based analysis (inverse docking, ΔG calculation and molecular dynamics simulation) to determine other potential targets for these compounds and their probable interactions with different signaling pathways relevant to this disease. Many functional food bioactives, belonging to different chemical classes, i.e., flavonoids, saponins, phenolics, alkaloids, iridoids and carotenoids, were proven to exhibit multifactorial effects in targeting the complex pathophysiology of ischemic conditions. These merits make them valuable therapeutic agents that can outperform the conventional drugs, and hence they can be utilized as add-ons to the conventional therapy for the management of different ischemic conditions; however, their rigorous clinical assessment is necessary.


Asunto(s)
Isquemia Encefálica , Enfermedad de la Arteria Coronaria , Medicamentos Herbarios Chinos , Ingredientes Alimentarios , Isquemia Miocárdica , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Humanos , Isquemia , Simulación del Acoplamiento Molecular , Isquemia Miocárdica/tratamiento farmacológico
14.
Int J Pharm ; 621: 121781, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35489604

RESUMEN

The present work deals with the development of metformin-loaded ethosomes for localized treatment of melanoma and wound healing. Different ethosomal formulations were prepared using different concentrations of ethanol adopting injection technique. The developed formulations were investigated for entrapment efficiency, ex-vivo skin permeation, vesicle size, morphology and permeation kinetics. The optimized formulation was loaded in 5 % carbomer gel that was evaluated for skin permeation, cytotoxic effect against melanoma mice B16 cell line and for wound healing action. Ethosomes having 30 % v/v ethanol displayed superior entrapment for metformin % (55.3 ± 0.07); and a highly efficient permeation via mice skin (85.8 ± 3.7). The related carbomer ethosomal gel exhibited higher skin permeation compared to the untreated metformin gel (P < 0.001). The metformin ethosomes had a substantial antiproliferative activity against melanoma B16 cells compared to corresponding metformin solution as shown by the lower IC50 values (56.45 ± 1.47 and 887.3 ± 23.2, respectively, P < 0.05) and tumour cell viability (P < 0.05). The ethosomal system had a significant wound healing action in mice (80.5 ± 1.9%) that was superior to that of the marketed product Mebo® ointment (56 ± 1 %), P < 0.05. This ethosomal system demonstrated outstanding induction of the mRNA levels of growth factors (IGF-1, FGF-1, PDGF-B and TGF-ß) that are essential in the healing process. Those findings were supported by histopathologic examination of wound sections of different treated groups. Thus, the study proved that metformin ethosomes as a promising drug delivery system and a conceivable therapeutic approach for treatment of melanoma and wound healing.


Asunto(s)
Melanoma , Metformina , Administración Cutánea , Animales , Aptitud , Línea Celular , Etanol/farmacología , Liposomas/farmacología , Melanoma/metabolismo , Metformina/farmacología , Ratones , Piel/metabolismo , Absorción Cutánea , Cicatrización de Heridas
15.
Fundam Clin Pharmacol ; 36(1): 160-170, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34268806

RESUMEN

BACKGROUND/AIM: SARS-CoV-2 is one of the coronavirus families that emerged at the end of 2019. It infected the respiratory system and caused a pandemic worldwide. Fluoroquinolones (FQs) have been safely used as antibacterial agents for decades. The antiviral activity of FQs was observed. Moreover, substitution on the C-7 position of ciprofloxacin enhanced its antiviral activity. Therefore, this study aims to investigate the antiviral activity of 7-(4-(N-substituted-carbamoyl-methyl)piperazin-1yl)-chalcone in comparison with ciprofloxacin against SARS-CoV-2 main protease (Mpro ). MATERIALS AND METHODS: Vero cells were infected with SARS-CoV-2. After treatment with ciprofloxacin and the chalcone at the concentrations of 1.6, 16, 160 nmol/L for 48 h, SARS-CoV-2 viral load was detected using real-time qPCR, SARS-CoV-2 infectivity was determined using plaque assay, and the main protease enzyme activity was detected using in vitro 3CL-protease inhibition assay. The activity of the chalcone was justified through molecular docking within SARS-CoV-2 Mpro , in comparison with ciprofloxacin. RESULTS: The new chalcone significantly inhibited viral load replication where the EC50 was 3.93 nmol/L, the plaque formation ability of the virus was inhibited to 86.8% ± 2.47. The chalcone exhibited a significant inhibitory effect against SARS-CoV-2 Mpro in vitro in a dose-dependent manner. The docking study into SARS-CoV-2 Mpro active site justified the importance of adding a substitution to the parent drug. Additionally, the assessment of the drug-likeness properties indicated that the chalcone might have acceptable ADMET properties. CONCLUSION: The new chalcone might be useful and has new insights for the inhibition of SARS-CoV-2 Mpro .


Asunto(s)
Antivirales/farmacología , Chalconas , Ciprofloxacina , Proteasas 3C de Coronavirus/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Animales , Chalconas/farmacología , Chlorocebus aethiops , Ciprofloxacina/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Células Vero
16.
Molecules ; 26(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34946711

RESUMEN

Insulin resistance contributes to several disorders including type 2 diabetes and cardiovascular diseases. Carpachromene is a natural active compound that inhibits α-glucosidase enzyme. The aim of the present study is to investigate the potential activity of carpachromene on glucose consumption, metabolism and insulin signalling in a HepG2 cells insulin resistant model. A HepG2 insulin resistant cell model (HepG2/IRM) was established. Cell viability assay of HepG2/IRM cells was performed after carpachromene/metformin treatment. Glucose concentration and glycogen content were determined. Western blot analysis of insulin receptor, IRS1, IRS2, PI3k, Akt, GSK3, FoxO1 proteins after carpachromene treatment was performed. Phosphoenolpyruvate carboxykinase (PEPCK) and hexokinase (HK) enzymes activity was also estimated. Viability of HepG2/IRM cells was over 90% after carpachromene treatment at concentrations 6.3, 10, and 20 µg/mL. Treatment of HepG2/IRM cells with carpachromene decreased glucose concentration in a concentration- and time-dependant manner. In addition, carpachromene increased glycogen content of HepG2/IRM cells. Moreover, carpachromene treatment of HepG2/IRM cells significantly increased the expression of phosphorylated/total ratios of IR, IRS1, PI3K, Akt, GSK3, and FoxO1 proteins. Furthermore, PEPCK enzyme activity was significantly decreased, and HK enzyme activity was significantly increased after carpachromene treatment. The present study examined, for the first time, the potential antidiabetic activity of carpachromene on a biochemical and molecular basis. It increased the expression ratio of insulin receptor and IRS1 which further phosphorylated/activated PI3K/Akt pathway and phosphorylated/inhibited GSK3 and FoxO1 proteins. Our findings revealed that carpachromene showed central molecular regulation of glucose metabolism and insulin signalling via IR/IRS1/ PI3K/Akt/GSK3/FoxO1 pathway.


Asunto(s)
Benzopiranos/farmacología , Proteína Forkhead Box O1/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Células Hep G2 , Humanos
17.
Food Funct ; 12(17): 8078-8089, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34286787

RESUMEN

Herein, we investigated both fruits and leaves of Morus macroura Miq. as a potential source of bioactive compounds against Alzheimer's disease (AD). LC-HRMS-assisted chemical profiling of its extracts showed that they are a rich source of diverse phytochemicals. Among the 29 identified compounds in both the fruit and leaf extracts, moracin D, chrysin, resveratrol, and ferulic acid were predicted to pass the human blood-brain barrier (BBB), and hence, reach their therapeutic targets in the brain. Subsequently, these compounds were subjected to a comprehensive pharmacophore-based screening for their protein targets relevant to AD using two independent software programs (i.e. Swiss Target Prediction and PharmMapper). The results of this initial virtual screening were further refined by a number of docking and molecular dynamic simulation experiments to suggest a number of crucial AD-related proteins (e.g. acetylcholine esterase, ß-secretase, and monoamine oxidase) as potential targets for these compounds. Finally, in vitro testing was performed to validate the in silico investigation's results, where chrysin, resveratrol, and ferulic acid were found to inhibit the predicted AD-related enzymes with IC50 values comparable with those of the reference inhibitors. Additionally, they were able to inhibit the aggregation of amyloid-beta, one of the hallmarks in AD pathogenesis, and to exhibit considerable antioxidant capacity. Our results highlighted Morus macroura compounds as future anti-Alzheimer chemical leads.


Asunto(s)
Inhibidores Enzimáticos/química , Morus/química , Extractos Vegetales/química , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Antioxidantes/administración & dosificación , Antioxidantes/química , Simulación por Computador , Inhibidores Enzimáticos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Extractos Vegetales/farmacología
18.
Anticancer Res ; 41(5): 2383-2395, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952463

RESUMEN

BACKGROUND/AIM: This study aimed to investigate the effect of the new ciprofloxacin chalcone [7-(4-(N-substituted carbamoyl methyl) piperazin-1 yl)] on the proliferation, migration, and metastasis of MCF-7 and MDA-MB-231 breast cancer cell lines. MATERIALS AND METHODS: Cell viability, colony formation and cell migration abilities were analysed. Cell cycle distribution and apoptosis were examined by flow cytometry. The molecular mechanism underlying chalcone's activity was investigated using qRT-PCR and western blotting. RESULTS: This new ciprofloxacin chalcone significantly inhibited proliferation, colony formation, and cell migration abilities of both cancer cell lines. Furthermore, it initiated apoptosis and caused cell cycle arrest at G2/M and S phase in MCF-7 and MDA-MB-231 cell lines, respectively. In addition, it up-regulated the expression of pro-apoptotic factors, p53, PUMA and NOXA, and down-regulated the expression of anti-apoptotic factors, MDM2 and MDM4. At the same time, it inhibited epithelial-mesenchymal transition by increasing the expression of E-cadherin and decreasing the expression of TGF-ß1, SNAI1, TWIST1, MMP2, and MMP9. CONCLUSION: This new ciprofloxacin chalcone exhibited promising apoptotic and anti-metastatic activities against MCF-7 and MDA-MB-231 breast cancer cell lines, and, therefore, is an attractive molecule for drug development in the treatment of breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Chalcona/farmacología , Ciprofloxacina/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cadherinas/genética , Cadherinas/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Chalcona/química , Ciprofloxacina/química , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Estructura Molecular , Proteínas/genética , Transducción de Señal/genética , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
19.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35056101

RESUMEN

Keratitis is a global health issue that claims the eye sight of millions of people every year. Dry eye, contact lens wearing and refractive surgeries are among the most common causes. The resistance rate among fluoroquinolone antibiotics is >30%. This study aims at formulating a newly synthesized ciprofloxacin derivative (2b) niosomes and Solulan C24-, sodium cholate- and deoxycholate-modified niosomes. The prepared niosomal dispersions were characterized macroscopically and microscopically (SEM) and by percentage entrapment efficiency, in vitro release and drug release kinetics. While the inclusion of Solulan C24 produced something discoidal-shaped with a larger diameter, both cholate and deoxycholate were unsuccessful in forming niosomes dispersions. Conventional niosomes and discomes (Solulan C24-modified niosomes) were selected for further investigation. A corneal ulcer model inoculated with colonies of Pseudomonas aeruginosa in rabbits was developed to evaluate the effectiveness of keratitis treatment of the 2b-loaded niosomes and 2b-loaded discomes compared with Ciprocin® (ciprofloxacin) eye drops and control 2b suspension. The histological documentation and assessment of gene expression of the inflammatory markers (IL-6, IL1B, TNFα and NF-κB) indicated that both 2b niosomes and discomes were superior treatments and can be formulated at physiological pH 7.4 compatible with the ocular surface, compared to both 2b suspension and Ciprocin® eye drops.

20.
Anticancer Res ; 40(5): 2739-2749, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32366419

RESUMEN

BACKGROUND/AIM: Ciprofloxacin has been used as an antibiotic in the clinic for decades. Recently, ciprofloxacin and its derivatives have shown promising anti-proliferative and cytotoxic activities against several malignant cells. The aim of this study was to investigate the effect of a new derivative of ciprofloxacin on colorectal cancer (HCT116) and non-small lung carcinoma (A549) cells. MATERIALS AND METHODS: Cell viability was detected by the MTT assay. Flow cytometry was used to examine the cell cycle and apoptosis. Expression of bax, bcl2, p53 and p21 was investigated by qRT-PCR and western blotting. RESULTS: Ciprofloxacin-derivative had an anti-proliferative effect on both cell lines in a concentration-dependent manner and caused cell cycle arrest at the G2/M phase and apoptosis. p53 and Bax proteins were overexpressed, while p21 and bcl2 gene expression was decreased after treatment with the ciprofloxacin derivative. CONCLUSION: This new ciprofloxacin derivative can be potentially used for the treatment of colorectal cancer and non-small lung carcinoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Ciprofloxacina/farmacología , Células A549 , Anexina A5/metabolismo , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Concentración 50 Inhibidora , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...