Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-503821

RESUMEN

Enterovirus D68 is a re-emerging enterovirus which causes acute respiratory illness in infants. EV-D68 infection has recently been associated with Acute Flaccid Myelitis, a severe polio-like neurological disease that causes limb weakness and loss of muscle tone in infants. There is currently no FDA-approved drug or prophylactic vaccine against EV-D68. Here, we investigated the role of the histone deacetylase, SIRT-1, in autophagy and EV-D68 infection. We show that SIRT-1 plays an important role in both autophagy and EV-D68 infection. siRNA-mediated knockdown of the cellular protein blocks basal and stress-induced autophagy and reduces EV-D68 extracellular viral titers. The proviral activity of SIRT-1 does not require deacetylase activity, since transient expression of both wild-type and deacetylase-inactive SIRT-1 mutant plasmids increased EV-D68 release. In non-lytic conditions, EV-D68 is primarily released in extracellular vesicles, and SIRT-1 is required for this process. Knockdown of SIRT-1 further impedes EV-D68 release in the autophagy-deficient ATG-7 knockout cells. Knockdown of SIRT-1 also decreases titers of poliovirus (PV) and SARS-CoV-2, but not Coxsackievirus-B3 (CVB3). CVB3 is the only tested virus that fails to induce SIRT-1 translocation to the cytosol. Our data suggest a correlation between SIRT-1 translocation during viral infection and extracellular vesicle-mediated non-lytic release of infectious viral particles. SIGNIFICANCEPicornaviruses, including EV-D68, constitute a significant cause of human disease. EV-D68 infection generally causes mild respiratory tract infection in infants but has recently been implicated in a severe polio-like neurological disease, AFM. Given the lack of prophylactic vaccines or antivirals against EV-D68, identifying host factors that modulate EV-D68 infection is crucial. Here, we show that SIRT-1 regulates autophagy and EV-D68 infection. Knockdown of SIRT-1 blocked autophagy and impeded the non-lytic release of EV-D68 in extracellular vesicles. We also show that SIRT-1 modulates the release of SARS-CoV-2 and poliovirus but not Coxsackievirus-B3 virus. Our data suggest that many RNA viruses require SIRT-1 for egress and that targeting SIRT-1 could constitute a broad-spectrum antiviral strategy.

2.
Oncotarget ; 8(42): 72727-72738, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29069821

RESUMEN

The incidence of liver cancer, the second leading cause of cancer-related deaths has increased over the past few decades. Although recent treatments such as sorafenib are promising in patients with advanced hepatocellular carcinoma (HCC), the response rates remain poor thereby warranting the identification of novel therapeutic agents against liver cancer. Herein, we investigated the anti-cancer effect of ergosterol (a secondary metabolite in medicinal fungus) pretreatment followed by amphotericin B (AmB) treatment on liver cancer cell lines. We demonstrated that pretreatment with a nontoxic dose of ergosterol synergistically enhanced the cytotoxicity of AmB in both Hep3B and HepJ5 cells. The combination treatment-mediated suppression of cancer cell viability occurred through necrosis characterized by disrupted cell membrane and significant amounts of debris accumulation. In addition, we also observed a concomitant increase in reactive oxygen species (ROS) and LC3-II levels in HepJ5 cells treated with ergosterol and AmB. Our results suggest that ergosterol-AmB combination treatment effectively induced necrotic cell death in cancer cells, and deserves further evaluation for development as an anti-cancer agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA