Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e36978, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296132

RESUMEN

The abstract highlights the global issue of environmental contamination caused by organic compounds and the exploration of various methods for its resolution. One such approach involves the utilization of titanium dioxide (TiO2) as a photocatalyst in conjunction with natural adsorption materials like kaolin. The study employed a modeling-based approach to investigate the sustainable photocatalytic degradation of acidic dyes using a Jordanian nano-kaolin-TiO2 composite material and solar energy. Mechanistic insights were gained through the identification of the dominant reactive oxygen species (ROS) involved in the degradation process, as well as the synergetic effect between adsorption and photocatalysis. The Jordanian nano-kaolin-TiO2 composite was synthesized using the sol-gel method and characterized. The nanocomposite photocatalyst exhibited particle sizes ranging from 27 to 41 nm, with the TiO2 nanoparticles well-dispersed within the kaolin matrix. The efficacy of this nanocomposite in removing Congo-red dye was investigated under various conditions, including pH, initial dye concentration, and photocatalyst amount. The optimal conditions for dye removal were found to be at pH 5, with an initial dye concentration of 20 ppm, and using 0.1 g of photocatalyst, resulting in a 95 % removal efficiency. The mechanistic insights gained from this study indicate that the hydroxyl radicals (•OH) generated during the photocatalytic process play a dominant role in the degradation of the acidic dye. Furthermore, the synergetic effect between the adsorption of the dye molecules onto the photocatalyst surface and the subsequent photocatalytic degradation by the ROS was found to enhance the overall removal efficiency. These findings contribute to the fundamental understanding of the photodegradation mechanisms and guide the development of more efficient photocatalytic systems for the treatment of acidic dye-containing wastewater. The use of solar power during the purification procedure also leads to cost reduction and strengthens sustainability efforts.

2.
Molecules ; 28(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298896

RESUMEN

This research is being conducted to learn more about various compounds and their potential uses in various fields such as renewable energy, electrical conductivity, the study of optoelectronic properties, the use of light-absorbing materials in photovoltaic device thin-film LEDs, and field effect transistors (FETs). AgZF3 (Z = Sb, Bi) compounds, which are simple, cubic, ternary fluoro-perovskites, are studied using the FP-LAPW and low orbital algorithm, both of which are based on DFT. Structure, elasticity and electrical and optical properties are only some of the many features that can be predicted. The TB-mBJ method is used to analyze several property types. An important finding of this study is an increase in the bulk modulus value after switching Sb to Bi as the metallic cation designated as "Z" demonstrates the stiffness characteristic of a material. The anisotropy and mechanical balance of the underexplored compounds are also revealed. Our compounds are ductile, as evidenced by the calculated Poisson ratio, Cauchy pressure, and Pugh ratio values. Both compounds exhibit indirect band gaps (X-M), with the lowest points of the conduction bands located at the evenness point X and the highest points of the valence bands located at the symmetry point M. The principal peaks in the optical spectrum can be understood in light of the observed electronic structure.


Asunto(s)
Algoritmos , Compuestos de Calcio , Anisotropía , Electrónica
3.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770657

RESUMEN

TiO2-Kaolinite nanocomposite photocatalysts were synthesized using the sol-gel method, with titanium isopropoxide/HCl as reactants and Jordanian kaolinite clay as a support material. The samples' TiO2 content ranged from 10% to 70% (m/m). TiO2-Kaolinite composites were characterized using FTIR, SEM, XRF, and XRD. According to XRD measurements of the nano-composite samples, the intensity of the anatase peaks increased as the TiO2 percentage of the composition increased. As the percentage of TiO2 increased, so did the peaks of Ti-O-Si in FTIR. The extent of photocatalytic degradation of Congo-red dye was used to evaluate the photocatalytic activity of the prepared nanocomposites. After four hours under the sun, the percentage of Congo-red degradation ranged from 27 to 99 percent depending on the TiO2 content of the used nanocomposite. Meanwhile, the concentration drop in the dark did not exceed 10%. Photodegradation outperforms traditional treatment methods in terms of target degradation. Using naturally abundant materials such as clay in conjunction with metal oxides is widely regarded as an effective method of modifying the photoresponse properties of TiO2 particles, thereby improving solar light harvesting for target degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA