Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 17(166): 20200251, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453980

RESUMEN

Biochemical pathways and networks are central to cellular information processing. While a broad range of studies have dissected multiple aspects of information processing in biochemical pathways, the effect of spatial organization remains much less understood. It is clear that space is central to intracellular organization, plays important roles in cellular information processing and has been exploited in evolution; additionally, it is being increasingly exploited in synthetic biology through the development of artificial compartments, in a variety of ways. In this paper, we dissect different aspects of the interplay between spatial organization and biochemical pathways, by focusing on basic building blocks of these pathways: covalent modification cycles and two-component systems, with enzymes which may be monofunctional or bifunctional. Our analysis of spatial organization is performed by examining a range of 'spatial designs': patterns of localization or non-localization of enzymes/substrates, theoretically and computationally. Using these well-characterized in silico systems, we analyse the following. (i) The effect of different types of spatial organization on the overall kinetics of modification, and the role of distinct modification mechanisms therein. (ii) How different information processing characteristics seen experimentally and studied from the viewpoint of kinetics are perturbed, or generated. (iii) How the activity of enzymes (bifunctional enzymes in particular) may be spatially manipulated, and the relationship between localization and activity. (iv) How transitions in spatial organization (encountered either through evolution or through the lifetime of cells, as seen in multiple model organisms) impacts the kinetic module (and pathway) behaviour, and how transitions in chemistry may be impacted by prior spatial organization. The basic insights which emerge are central to understanding the role of spatial organization in biochemical pathways in both bacteria and eukaryotes, and are of direct relevance to engineering spatial organization of pathways in bottom-up synthetic biology in cellular and cell-free systems.


Asunto(s)
Bioquímica , Biología Sintética , Simulación por Computador , Cinética
2.
Biophys J ; 108(12): 2912-24, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26083931

RESUMEN

Information transmission in cells occurs through complex networks of proteins and genes and is relayed through cascades of biochemical modifications, which are typically studied through ordinary differential equations. However, it is becoming increasingly clear that spatial factors can strongly influence chemical information transmission in cells. In this article, we systematically disentangle the effects of space in signaling cascades. This is done by examining the effects of localization/compartmentalization and diffusion of enzymes and substrates in multiple variants of chemical modification cascades. This includes situations where the modified form of species at one stage 1) acts as an enzyme for the next stage; 2) acts as a substrate for the next stage; and 3) is involved in phosphotransfer. Our analysis reveals the multiple effects of space in signal transduction cascades. Although in some cases space plays a modulatory effect (itself of interest), in other cases, spatial regulation and control can profoundly affect the nature of information processing as a result of the subtle interplay between the patterns of localization of species, diffusion, and the nature of the modification cascades. Our results provide a platform for disentangling the role of space and spatial control in multiple cellular contexts and a basis for engineering spatial control in signaling cascades through localization/compartmentalization.


Asunto(s)
Compartimento Celular , Procesamiento Proteico-Postraduccional , Transducción de Señal , Metaboloma , Modelos Teóricos
3.
Biophys J ; 105(7): 1720-31, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24094413

RESUMEN

Covalent modification cycles are basic units and building blocks of posttranslational modification and cellular signal transduction. We systematically explore different spatial aspects of signal transduction in covalent modification cycles by starting with a basic temporal cycle as a reference and focusing on steady-state signal transduction. We consider, in turn, the effect of diffusion on spatial signal transduction, spatial analogs of ultrasensitive behavior, and the interplay between enzyme localization and substrate diffusion. Our analysis reveals the need to explicitly account for kinetics and diffusional transport (and localization) of enzymes, substrates, and complexes. It demonstrates a complex and subtle interplay between spatial heterogeneity, diffusion, and localization. Overall, examining the spatial dimension of covalent modification reveals that 1), there are important differences between spatial and temporal signal transduction even in this cycle; and 2), spatial aspects may play a substantial role in affecting and distorting information transfer in modules/networks that are usually studied in purely temporal terms. This has important implications for the systematic understanding of signaling in covalent modification cycles, pathways, and networks in multiple cellular contexts.


Asunto(s)
Modelos Biológicos , Transducción de Señal , Difusión , Enzimas/metabolismo , Cinética , Procesamiento Proteico-Postraduccional , Ciclo del Sustrato
4.
BMC Syst Biol ; 6: 83, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22765014

RESUMEN

BACKGROUND: Spatial signal transduction plays a vital role in many intracellular processes such as eukaryotic chemotaxis, polarity generation and cell division. Furthermore it is being increasingly realized that the spatial dimension to signalling may play an important role in other apparently purely temporal signal transduction processes. It is increasingly being recognized that a conceptual basis for studying spatial signal transduction in signalling networks is necessary. RESULTS: In this work we examine spatial signal transduction in a series of standard motifs/networks. These networks include coherent and incoherent feedforward, positive and negative feedback, cyclic motifs, monostable switches, bistable switches and negative feedback oscillators. In all these cases, the driving signal has spatial variation. For each network we consider two cases, one where all elements are essentially non-diffusible, and the other where one of the network elements may be highly diffusible. A careful analysis of steady state signal transduction provides many insights into the behaviour of all these modules. While in the non-diffusible case for the most part, spatial signalling reflects the temporal signalling behaviour, in the diffusible cases, we see significant differences between spatial and temporal signalling characteristics. Our results demonstrate that the presence of diffusible elements in the networks provides important constraints and capabilities for signalling. CONCLUSIONS: Our results provide a systematic basis for understanding spatial signalling in networks and the role of diffusible elements therein. This provides many insights into the signal transduction capabilities and constraints in such networks and suggests ways in which cellular signalling and information processing is organized to conform to or bypass those constraints. It also provides a framework for starting to understand the organization and regulation of spatial signal transduction in individual processes.


Asunto(s)
Células/citología , Transducción de Señal , Biología de Sistemas/métodos , Difusión , Retroalimentación Fisiológica , Modelos Biológicos
5.
J Theor Biol ; 273(1): 80-99, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21167180

RESUMEN

Many important cellular processes rely on cellular responses to spatially graded signals. This response may be either attractive, indicating a positive bias, or repulsive indicating a negative bias. In this paper we consider cells which exhibit both repulsive and attractive gradient sensing responses and aim to uncover the underlying design principles and features of how the networks are wired which could allow a cell to exhibit both responses. We use a modular approach to examine different configurations which will allow for a cell to exhibit both responses and analyse how this depends on the basic characteristics of gradient sensing and downstream signal propagation. Overall our analysis provides insights into how gradient responses can be switched and the key factors which affect this switching.


Asunto(s)
Modelos Biológicos , Transducción de Señal , Animales
6.
J Theor Biol ; 266(1): 140-53, 2010 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-20510250

RESUMEN

Chemorepulsion is the process by which an organism or a cell moves in the direction of decreasing chemical concentration. While a few experimental studies have been performed, no mathematical models exist for this process. In this paper we have modelled gradient sensing, the first subprocess of chemorepulsion, in Dictyostelium discoideum-a well characterized model eukaryotic system. We take the first steps towards achieving a comprehensive mechanistic understanding of chemorepulsion in this system. We have used, as a basis, the biochemical network of the Keizer-Gunnink et al. (2007) to develop the mathematical modelling framework. This network describes the underlying pathways of chemorepellent gradient sensing in D. discoideum. Working within this modelling framework we address whether the postulated interactions of the pathways and species in this network can lead to a chemorepulsive response. We also analyse the possible role of additional regulatory effects (such as additional receptor regulation of enzymes in this network) and if this is necessary to achieve this behaviour. Thus we have investigated the receptor regulation of important enzymes and feedback effects in the network. This modelling framework generates important insights into and testable predictions regarding the role of key components and feedback loops in regulating chemorepulsive gradient sensing, and what factors might be important for generating a chemorepulsive response; it serves as a first step towards a comprehensive mechanistic understanding of this process.


Asunto(s)
Quimiotaxis/fisiología , Dictyostelium/fisiología , Modelos Biológicos , Transducción de Señal/fisiología , Citoesqueleto de Actina/metabolismo , Algoritmos , Simulación por Computador , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , Diglicéridos/metabolismo , Retroalimentación Fisiológica/fisiología , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Seudópodos/metabolismo , Receptores de AMP Cíclico/metabolismo , Tionucleótidos/metabolismo , Fosfolipasas de Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...