Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Sci Food Agric ; 103(3): 1247-1260, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36085598

RESUMEN

BACKGROUND: Consumers of grapefruit require consistent fruit quality with a good physical appearance and taste. The air temperature during the growing season affects both the external (external color index (ECI)) and internal (titratable acidity (TA) and total soluble solids ratio (TSS/TA)) fruit quality of grapefruit. The objective of this study was to develop computer models that encompass the relationship between preharvest air temperature and fruit quality to predict fruit quality of grapefruit at harvest. RESULTS: There was a logarithmic relationship between the number of days with a daily minimum air temperature ≤13 °C and ECI, with a greater number of days resulting in higher ECI. In addition, there was a second-order polynomial relationship between the number of hours ≥21 °C and both TA and TSS/TA, with a greater number of hours resulting in lower TA and higher TSS/TA. Model performance for predicting the ECI, TA, and TSS/TA during 2004-05 and 2005-06 growing seasons was good, with Nash and Sutcliffe coefficient of efficiency (NSE) values for each season of 0.835 and 0.917 respectively for ECI, 0.896 and 0.965 respectively for TA and 0.898 and 0.966 respectively for TSS/TA. Applying the model to statistical survey data covering 13 growing seasons demonstrated that the TSS/TA model was robust. CONCLUSION: Statistical models were developed that predicted the development of grapefruit ECI, TA, and TSS/TA. The TSS/TA model was confirmed after application to long-term statistical survey data covering 13 growing seasons. © 2022 Society of Chemical Industry.


Asunto(s)
Citrus paradisi , Temperatura , Percepción del Gusto , Estaciones del Año , Frutas
2.
Plants (Basel) ; 11(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35736712

RESUMEN

In Egypt's arid and semi-arid lands where the main olive production zone is located, evapotranspiration is higher than rainfall during winter. Limited research has used nanomaterials, especially nano-silicon (nSi) to improve the growth, development, and productivity of drought-stressed fruit trees, amid the global water scarcity problem. To assess the role of nSi on drought-sensitive 'Kalamata' olive tree growth, and biochemical and physiological changes under drought conditions, a split-plot experiment was conducted in a randomized complete block design. The trees were foliar sprayed with nSi in the field using nine treatments (three replicates each) of 0, 150, and 200 mg·L-1 under different irrigation regimes (100, 90, and 80% irrigation water requirements 'IWR') during the 2020 and 2021 seasons. Drought negatively affected the trees, but both concentrations of nSi alleviated drought effects at reduced irrigation levels, compared to the non-stressed trees. Foliar spray of both concentrations of nSi at a moderate level (90% IWR) of drought resulted in improved yield and fruit weight and reduced fruit drop percentage, compared to 80% IWR. In addition, there were reduced levels of osmoprotectants such as proline, soluble sugars, and abscisic acid (ABA) with less membrane damage expressed as reduced levels of malondialdehyde (MDA), H2O2 and electrolyte leakage at 90% compared to 80% IWR. These results suggest that 'Kalamata' olive trees were severely stressed at 80% compared to 90% IWR, which was not surprising as it is classified as drought sensitive. Overall, the application of 200 mg·L-1 nSi was beneficial for the improvement of the mechanical resistance, growth, and productivity of moderately-stressed (90% IWR) 'Kalamata' olive trees under the Egyptian semi-arid conditions.

3.
Plants (Basel) ; 11(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35336624

RESUMEN

Plant growth, development, and productivity are adversely affected under drought conditions. Previous findings indicated that 5-aminolevulinic acid (ALA) and 24-epibrassinolide (EBL) play an important role in the plant response to adverse environmental conditions. This study demonstrated the role of ALA and EBL on oxidative stress and photosynthetic capacity of drought-stressed 'Williams' banana grown under the Egyptian semi-arid conditions. Exogenous application of either ALA or EBL at concentrations of 15, 30, and 45 mg·L-1 significantly restored plant photosynthetic activity and increased productivity under reduced irrigation; this was equivalent to 75% of the plant's total water requirements. Both compounds significantly reduced drought-induced oxidative damages by increasing antioxidant enzyme activities (superoxide dismutase 'SOD', catalase 'CAT', and peroxidase 'POD') and preserving chloroplast structure. Lipid peroxidation, electrolyte loss and free non-radical H2O2 formation in the chloroplast were noticeably reduced compared to the control, but chlorophyll content and photosynthetic oxygen evolution were increased. Nutrient uptake, auxin and cytokinin levels were also improved with the reduced abscisic acid levels. The results indicated that ALA and EBL could reduce the accumulation of reactive oxygen species and maintain the stability of the chloroplast membrane structure under drought stress. This study suggests that the use of ALA or EBL at 30 mg·L-1 can promote the growth, productivity and fruit quality of drought-stressed banana plants.

4.
Plants (Basel) ; 10(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34579371

RESUMEN

Ethylene plays a pivotal role in the climacteric fruit ripening and senescence process. The effect of three ethylene inhibitors on the yield, quality, and storability of 'Canino' apricot fruit was studied. Foliar sprays of distilled water (control), aminoethoxyvinylglycine (AVG) (150 and 100 mg·L-1), salicylic acid (SA) (4 and 2 mM), and chitosan (2.5% and 1.5%) were applied 30 and 15 days before harvest. Results indicated that the high concentrations of AVG and SA recorded the lowest percentage of preharvest fruit drop and, hence, the highest yield. Trees receiving either concentration of AVG showed the highest fruit firmness. High concentrations of all three ethylene inhibitors reduced fruit weight loss, total carotenoids, and soluble solid content (SSC), but increased total acidity (TA) during cold storage (2 °C). A high score of overall taste acceptability was observed with a higher concentration of SA, which was also recorded the lowest fruit malondialdehyde content (MDA) at harvest and during storage. The highest concentrations of SA and chitosan recorded no decay for 28 days of storage. Gene expression analysis reflected higher expression of PaACS1 gene with the highest concentrations of ethylene inhibitors, suggesting that SA (4 mM) is recommended for optimal yield, quality, and storability of 'Canino' apricot fruit grown under Egyptian conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA