Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsc Res Tech ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706433

RESUMEN

Traditional medicinal plants play an important role in primary health care worldwide. The phytochemical screening and activities of Geranium pusillum were investigated in this research. The dried plant leaves were extracted with ethanol, n-hexane, chloroform, dichloromethane, methanol, acetone, and aqueous solvents. These extracts were qualitatively analyzed, GC-MS, antimicrobial activities by using the disc diffusion method, antioxidant activity was determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging, and cytotoxic activity was analyzed by the hemolytic activity of human red blood cells. The results showed phytochemicals such as flavonoids, terpenoids, steroids, phenols, saponins, tannins, and cardiac glycosides were detected in plant leaves. The ethanol extract at a concentration of 10 mg/mL showed a maximum inhibition zone 17.5 ± 0.09, 15.6 ± 0.11, 14.2 ± 0.17, 18.4 ± 0.11, 16.6 ± 0.15, 12.5 ± 0.13, 15.9 ± 0.10, and 13.1 ± 0.11 mm, and at 15 mg/mL showed 24.5 ± 0.09, 27.2 ± 0.12, 26.3 ± 0.17, 28.4 ± 0.10, 27.9 ± 0.16, 22.5 ± 0.13, 27.1 ± 0.10, and 24.1 ± 0.16 mm against Escherichia coli, Pasturella multocida (gram-negative), Staphylococcus aureus, Bacillus subtilus (gram-positive), Rhizopus solani, Aspergillus flavus, Aspergillus niger, and Alternaria alternate (fungal strain), respectively, and dichloromethane showed a minimum inhibition zone as compared to other extracts against bacterial as well as fungal strains. Chloroform extract had maximum antioxidant activity (45.00 ± 0.08%) and minimum in dichloromethane (12.20 ± 0.04%). Cytotoxic activity was found maximum in acetone extract (19.83 ± 0.07%) and minimum in ethanol extract (4.72 ± 0.04%). It is concluded that phytochemicals like phenols, flavonoids, and others may be responsible for these activities, which is why this plant is used for traditional medicine. RESEARCH HIGHLIGHTS: Geranium pusillum has therapeutic properties that exhibit various biological activities beneficial for human health. G. pusillum has significant inhibitory effects against bacterial and fungal strains. Chloroform solvent extract indicates potential free radical scavenging abilities. Acetone extract exhibits notable effects on human red blood cells and demonstrates significant cytotoxic activity.

2.
Rice (N Y) ; 17(1): 31, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38671283

RESUMEN

Experiments were conducted to evaluate the role of exogenously applied jasmonic acid (JA; 0.1 and 0.5 µM) in alleviating the toxic effects of arsenic (As; 5 and 10 µM) stress in rice. Plants treated with As showed considerable decline in growth attributes like height, fresh and dry weight of plant. Arsenic stress reduced the content of δ-amino livulenic acid (δ-ALA), glutamate 1-semialdehyde (GSA), total chlorophylls and carotenoids, with more reduction evident at higher (10 µM) As concentrations, however exogenously supplied JA alleviated the decline to considerable extent. Arsenic stress mediated decline in photosynthetic gas exchange parameters, Fv/Fm (PSII activity) and Rubisco activity was alleviated by the exogenous treatment of JA. Arsenic stress caused oxidative damage which was evident as increased lipid peroxidation, lipoxygenase activity and hydrogen peroxide concentrations however, JA treatment declined these parameters. Treatment of JA improved the activity of nitrate reductase and glutamate synthase under unstressed conditions and also alleviated the decline triggered by As stress. Activity of antioxidant enzymes assayed increased due to As stress, and the supplementation of JA caused further increase in their activities. Moreover, the content of proline, free amino acids and total phenols increased significantly due to JA application under stressed and unstressed conditions. Treatment of JA increased the content of nitrogen and potassium while as reduced As accumulation significantly.

3.
Plants (Basel) ; 12(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37836204

RESUMEN

The impact of the exogenous supplementation of hydrogen sulfide (20 and 50 µM HS) on growth, enzyme activity, chlorophyll pigments, and tolerance mechanisms was studied in salinity-stressed (100 mM NaCl) wheat. Salinity significantly reduced height, fresh and dry weight, chlorophyll, and carotenoids. However, the supplementation of HS (at both concentrations) increased these attributes and also mitigated the decline to a considerable extent. The exogenous supplementation of HS reduced the accumulation of hydrogen peroxide (H2O2) and methylglyoxal (MG), thereby reducing lipid peroxidation and increasing the membrane stability index (MSI). Salinity stress increased H2O2, MG, and lipid peroxidation while reducing the MSI. The activity of nitrate reductase was reduced due to NaCl. However, the supplementation of HS alleviated the decline with obvious effects being seen due to 50 µM HS. The activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) was assayed and the content of reduced glutathione (GSH) increased due to salt stress and the supplementation of HS further enhanced their activity. A decline in ascorbic acid due to salinity stress was alleviated due to HS treatment. HS treatment increased the endogenous concentration of HS and nitric oxide (NO) under normal conditions. However, under salinity stress, HS supplementation resulted in a reduction in HS and NO as compared to NaCl-treated plants. In addition, proline and glycine betaine increased due to HS supplementation. HS treatment reduced sodium levels, while the increase in potassium justified the beneficial role of applied HS in improving salt tolerance in wheat.

4.
3 Biotech ; 13(8): 288, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37525633

RESUMEN

Zinc toxicity is affecting the growth and yield of major crops plants throughout globe by reducing key metabolic processes. In this backdrop, experiments were conducted to evaluate the influence of exogenous supplementation of trehalose (500 µM Treh) and spermidine (500 µM Spd) in alleviating the damaging effects of zinc toxicity (100 µM ZnSO4) in Vigna radiata. Growth, chlorophyll and photosynthesis were reduced due to Zn toxicity; however, exogenous supplementation of trehalose and spermidine not only increased the parameters but also alleviated the decline to considerable levels. Toxicity of zinc increased H2O2, lipid peroxidation and electrolyte leakage by 100.43%, 84.53% and 134.64%, respectively, and application of trehalose and spermidine a reduction of 29.32%, 39.09% and 44.91%, respectively, over the zinc-treated plants. Application of trehalose and spermidine increased the activity of nitrate reductase and the content of nitrogen concomitant with alleviation of the decline caused due to zinc toxicity. The activity of antioxidant system enzymes superoxide dismutase, catalase and the enzymes of ascorbate-glutathione cycle was significantly enhanced due to trehalose and spermidine application. Proline, glycine betaine and activity of γ-glutamyl kinase increased maximally by 281.84%, 126.21% and 181.08%, respectively, in plants treated with zinc + trehalose + spermidine over control. Significant enhancement in the content of total phenols and flavonoids was observed due to the treatment of trehalose and spermidine individually as well as combinedly. Application of trehalose and spermidine reduced the content of methylglyoxal by up-regulating the activity of glyoxylase cycle enzymes. In addition under zinc toxicity conditions, the content of zinc declined in trehalose- and spermidine-treated plants.

5.
Plants (Basel) ; 12(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447067

RESUMEN

Commiphora gileadensis (L.) C. Chr is a perennial plant existing mainly in the southern and western mountains of the Arabian Peninsula. In the Makkah province, the remaining populations are threatened by many factors such as overcutting, overgrazing, and urban developments. These dangers are expected to be aggravated by the progression of aridification factors arising from climate change. To overcome the decline in remaining populations of this valuable species, a timely evaluation of the population's genetic variables and genetic structure is vital for the conservation of existing C. gileadensis populations. In this study, we used 61 SSR primers to achieve this objective. Only 50 loci showed polymorphisms, which led to further analysis of the population genetics for 600 genotypes that were collected from 50 populations of C. gileadensis found in 10 different sites in the Makkah region: Gebel Al Muliesaa, Wadi Albathna, Wadi Houra, Wadi Albaidaa, Wadi Elebiedia, Gebel Kniethl, Wadi Sayaa, Wadi Elbarasa, Wadi Alfawara, and Wadi Alkharar. The results showed an obvious decrease in genetic diversity variables in all studied populations. The range of PPL was between 8 and 40; additionally, the low HT value of 0.804 and the high value of inbreeding, Fis = 0.238, reflected a severe lack of heterozygotes. High levels of FST and GST and low gene flow indicate considerable segregation among the C. gileadensis populations, which creates a barrier to gene migration. Our data suggest the need for conservation planning for C. gileadensis in order to avoid the species' forthcoming extinction. Efforts should be largely oriented around managing water consumption, prohibiting overcutting and overgrazing, and establishing appropriate seed banks.

6.
Biology (Basel) ; 11(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36358259

RESUMEN

The aim of this study was to investigate the effect of a variable supply of potassium to culture medium on physiological and anatomical parameters (histological sections at the third internode) in basil, Ocimum basilicum. Thirty-four-day-old plants grown on basic nutrient medium were divided into four batches and grown on media with varying doses of potassium: 0.375 mM, 0.250 mM, 0.125 mM and 0 mM K+. After 64 days of culture, a final harvest was performed. The results showed that root and shoot growth in basil was decreased with decreased K+ concentration. This restriction was associated with a reduction in root elongation and leaf expansion, which was coupled with a decrease in chlorophyll and carotenoid contents. The estimation of electrolyte leakage reveals that this parameter was increased by potassium deficiency. With respect to total polyphenol and flavonoid contents, only the third leaf-stage extracts exhibited a decrease under low-K+ conditions. However, variability in response of phenolic compounds was recorded depending on the organ and the K+ concentration in the medium. Stem cross sections of potassium-deficient basil plants revealed a decrease in the diameter of these organs, which can be attributed to a restriction of the extent of different tissue territories (cortex and medulla), as well as by a reduction in cell size. These effects were associated with a decrease in the number of conducting vessels and an increase in the number of woody fibers.

7.
Plants (Basel) ; 11(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36235413

RESUMEN

Abiotic stresses are important constraints limiting crop productivity worldwide. Salinity is one of the most devastating environmental factors restraining the production of crops. It is urgently needed to search for environmentally safe and sustainable approaches to mitigate the harmful effects of salinity on plants. Hence, applying vermicompost and low-dose aqueous extract of sorghum delivers a pragmatic solution to ameliorate the detrimental outcomes of salinity on maize seedlings (Zea mays L.). The experiment consisted of three factors, each at different levels, i.e., salinity (control, 6, and 12 dS m-1), vermicompost (control, 5, and 10%), and sorghum water extract (control, 1, and 2%). Higher salt stress negatively influenced the morpho-physiological traits of maize. Nonetheless, applying vermicompost and sorghum water extract at 10% and 2%, respectively, increased tolerance against salinity. The application of 2% sorghum water extract and 10% vermicompost significantly improved morphological characteristics, chlorophyll contents, activities of antioxidant enzymes, leaf and root K+/Na+ ratio, and K+ contents. It decreased Na+ concentration, H2O2, and malondialdehyde contents at higher salinity levels. It can be concluded that soil-applied vermicompost and foliar-applied sorghum water extract mitigates the adverse impacts of salinity by activating the antioxidant defense system, improving chlorophyll contents, and reducing the accumulation of Na+ under salinity.

8.
Life (Basel) ; 12(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36143396

RESUMEN

The reduction of herbicide use and herbicide-resistant weeds through allelopathy can be a sustainable strategy to combat the concerns of environmental degradation. Allelopathic crop residues carry great potential both as weed suppressers and soil quality enhancers. The influence of sorghum crop residues and water extracts on the weed population, soil enzyme activities, the microbial community, and mung bean crop productivity was investigated in a two-year experiment at the Student Research Farm, University of Agriculture Faisalabad. The experimental treatments comprised two levels of sorghum water extract (10 and 20 L ha-1) and two residue application rates (4 and 6 t ha-1), and no sorghum water extract and residues were used as the control. The results indicated that the incorporation of sorghum water extract and residue resulted in significant changes in weed dynamics and the soil quality indices. Significant reduction in weed density (62%) and in the dry weight of weeds (65%) was observed in T5. After the harvest, better soil quality indices in terms of the microbial population (72-90%) and microbial activity (32-50%) were observed in the rhizosphere (0-15 cm) by the same treatment. After cropping, improved soil properties in terms of available potassium, available phosphorus soil organic matter, and total nitrogen were higher after the treatment of residue was incorporated, i.e., 52-65%, 29-45%, 62-84%, and 59-91%, respectively. In the case of soil enzymes, alkaline phosphatase and dehydrogenase levels in the soil were 35-41% and 52-77% higher, respectively. However, residue incorporation at 6 t ha-1 had the greatest effect in improving the soil quality indices, mung bean productivity, and reduction of weed density. In conclusion, the incorporation of 6 t ha-1 sorghum residues may be opted to improve soil quality indices, suppress weeds, harvest a better seed yield (37%), and achieve higher profitability (306 $ ha-1) by weed suppression, yield, and rhizospheric properties of spring-planted mung beans. This strategy can provide a probable substitute for instigating sustainable weed control and significant improvement of soil properties in the mung bean crop, which can be a part of eco-friendly and sustainable agriculture.

9.
Molecules ; 27(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36014570

RESUMEN

Nanotechnology is one of the vital and quickly developing areas and has several uses in various commercial zones. Among the various types of metal oxide-based nanoparticles, zinc oxide nanoparticles (ZnO NPs) are frequently used because of their effective properties. The ZnO nanocomposites are risk-free and biodegradable biopolymers, and they are widely being applied in the biomedical and therapeutics fields. In the current study, the biochar-zinc oxide (MB-ZnO) nanocomposites were prepared using a solvent-free ball-milling technique. The prepared MB-ZnO nanocomposites were characterized through scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray powder diffraction (XRD), and thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet-visible (UV) spectroscopy. The MB-ZnO particles were measured as 43 nm via the X-ray line broadening technique by applying the Scherrer equation at the highest peak of 36.36°. The FTIR spectroscope results confirmed MB-ZnO's formation. The band gap energy gap values of the MB-ZnO nanocomposites were calculated as 2.77 eV by using UV-Vis spectra. The MB-ZnO nanocomposites were tested in various in vitro biological assays, including biocompatibility assays against the macrophages and RBCs and the enzymes' inhibition potential assay against the protein kinase, alpha-amylase, cytotoxicity assays of the leishmanial parasites, anti-inflammatory activity, antifungal activity, and antioxidant activities. The maximum TAC (30.09%), TRP (36.29%), and DPPH radicals' scavenging potential (49.19%) were determined at the maximum dose of 200 µg/mL. Similarly, the maximum activity at the highest dose for the anti-inflammatory (76%), at 1000 µg/mL, alpha-amylase inhibition potential (45%), at 1000 µg/mL, antileishmanial activity (68%), at 100 µg/mL, and antifungal activity (73 ± 2.1%), at 19 mg/mL, was perceived, respectively. It did not cause any potential harm during the biocompatibility and cytotoxic assay and performed better during the anti-inflammatory and antioxidant assay. MB-ZnO caused moderate enzyme inhibition and was more effective against pathogenic fungus. The results of the current study indicated that MB-ZnO nanocomposites could be applied as effective catalysts in various processes. Moreover, this research provides valuable and the latest information to the readers and researchers working on biopolymers and nanocomposites.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Antibacterianos/farmacología , Antifúngicos/farmacología , Antioxidantes/farmacología , Carbón Orgánico , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Zea mays , Óxido de Zinc/química , Óxido de Zinc/farmacología , alfa-Amilasas
10.
J Fungi (Basel) ; 8(7)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887508

RESUMEN

Chickpea (Cicer arietinum L.) is one of the main pulse crops of Pakistan. The yield of chickpea is affected by a variety of biotic and abiotic factors. Due to their environmentally friendly nature, different nanoparticles are being synthesized and applied to economically important crops. In the present study, Trichoderma harzianum has been used as a stabilizing and reducing agent for the mycosynthesis of zinc oxide nanoparticles (ZnO NPs). Before their application to control Fusarium wilt of chickpea, synthesized ZnO NPs were characterized. X-ray diffraction (XRD) analysis revealed the average size (13 nm) of ZnO NPs. Scanning electron microscopy (SEM) indicated their spherical structure, and energy dispersive X-ray analysis (EDX) confirmed the oxide formation of ZnO NPs. Transmission electron microscopy (TEM) described the size and shape of nanoparticles, and Fourier transform infrared (FTIR) spectroscopy displayed the presence of reducing and stabilizing chemical compounds (alcohol, carboxylic acid, amines, and alkyl halide). Successfully characterized ZnO NPs exhibited significant mycelial growth inhibition of Fusarium oxysporum, in vitro. In a greenhouse pot experiment, the priming of chickpea seeds with ZnO NPs significantly increased the antioxidant activity of germinated plants and they displayed 90% less disease incidence than the control. Seed priming with ZnO NPs helped plants to accumulate higher quantities of sugars, phenol, total proteins, and superoxide dismutase (SOD) to create resistance against wilt pathogen. These nanofungicides were produced in powder form and they can easily be transferred and used in the field to control Fusarium wilt of chickpea.

11.
Molecules ; 27(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35889333

RESUMEN

Cherry is a fleshy drupe, and it is grown in temperate regions of the world. It is perishable, and several biotic and abiotic factors affect its yield. During April-May 2021, a severe fruit rot of cherry was observed in Swat and adjacent areas. Diseased fruit samples were collected, and the disease-causing pathogen was isolated on PDA. Subsequent morphological, microscopic, and molecular analyses identified the isolated pathogen as Aspergillus flavus. For the control of the fruit rot disease of cherry, iron oxide nanoparticles (Fe2O3 NPs) were synthesized in the leaf extract of Calotropis procera and characterized. Fourier transform infrared (FTIR) spectroscopy of synthesized Fe2O3 NPs showed the presence of capping and stabilizing agents such as alcohols, aldehydes, and halo compounds. X-ray diffraction (XRD) analysis verified the form and size (32 nm) of Fe2O3 NPs. Scanning electron microscopy (SEM) revealed the spinal-shaped morphology of synthesized Fe2O3 NPs while X-ray diffraction (EDX) analysis displayed the occurrence of main elements in the samples. After successful preparation and characterization of NPs, their antifungal activity against A. flavus was determined by poison technique. Based on in vitro and in vivo antifungal activity analyses, it was observed that 1.0 mg/mL concentration of Fe2O3 can effectively inhibit the growth of fungal mycelia and decrease the incidence of fruit rot of cherry. The results confirmed ecofriendly fungicidal role of Fe2O3 and suggested that their large-scale application in the field to replace toxic chemical fungicides.


Asunto(s)
Calotropis , Nanopartículas del Metal , Nanopartículas , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Frutas , Nanopartículas del Metal/química , Nanopartículas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
12.
Saudi J Biol Sci ; 29(5): 3806-3814, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844417

RESUMEN

Fruit drop is a key issue with date palm cultivars that can be addressed with a variety of methods and strategies. Foliar application of macronutrients can be more effective in inhibiting fruit drop and improving the quality of date fruits. The current study was carried out to investigate the possible role of potassium (K) and urea to reduce fruit drop and improve the fruit quality of "Dhakki" date palm. It was conducted in a complete randomised block design with seven treatments and three replications at Pakistan's Agricultural Research Institute, Dera Ismail Khan. The treatments used were: (i) Control (distilled water spray); (ii) Potassium sulphate (K2SO4) at 1 %; (iii) K2SO4 at 1 % + Urea at 2 %; (iv) K2SO4 at 2 %; (v) K2SO4 at 2 % + Urea at 2 %; (vi) K2SO4 at 3 % and; (vii) K2SO4 at 3 % + Urea at 2 %. All the concentrations were sprayed at Kimri stage of fruit development during two consecutive growing seasons. Twenty-one date palms of equal size and age were chosen for the assessments to measure percent fruit drop and other physicochemical variables, including fruit length, fruit diameter, fruit weight, pulp percentage, yield/bundle, pH, total soluble solids (TSS), K content in fruit, and all sugars (percent) of harvested date fruit. The results revealed that bunch spray of K significantly affected all the parameters during both seasons. Application of K2SO4 alone and in combination with urea not only effectively reduced the fruit drop but also improved fruit quality in date where, K2SO4 applied at 2 % combined with urea was the best concentration in reducing fruit drop, enhancing other physicochemical attributes, and improving fruit quality of "Dhakki" date palm. This study may effectively contribute to reduce the fruit drop and enhance the fruit quality by using K and urea, enabling farmers to improve the date yield and increase economic growth.

13.
Sci Rep ; 12(1): 9768, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697742

RESUMEN

Vegetables cultivated on contaminated agricultural soils are being consumed by the public, and consequently cause serious health concerns due to contaminants' dietary intake. The current study examines the safety and sustainability of eating eggplant (Solanum melongena) by looking into the possibility of heavy metals translocation from polluted soils to the edible sections, as well as the health hazards that come with it. Soil and eggplant samples were taken from three contaminated and other three uncontaminated farms to estimate their chemical constituents and plant growth properties. Based on the pollution load index data, the contaminated soils were highly polluted with Fe, Cu, Pb, and Zn; and relatively polluted with Cr, Mn, Cd, Mn, Co, and V. Under contamination stress, the fresh biomass, dry biomass, and production of eggplant were significantly reduced by 41.2, 44.6, and 52.1%, respectively. Likewise, chlorophyll a and b were significantly reduced from 1.51 to 0.69 mg g-1 and 1.36 to 0.64 mg g-1, respectively. The uncontaminated plant shoots had the highest quantities of N, P, and proteins (1.98, 2.08, and 12.40%, respectively), while the roots of the same plants had the highest K content (44.70 mg kg-1). Because eggplant maintained most tested heavy elements (excluding Zn and Pb) in the root, it is a good candidate for these metals' phytostabilization. However, it had the potential to translocate Mn and Zn to its shoot and Pb, Cr, Mn, and Zn to the edible fruits indicating its possibility to be a phytoextractor and accumulator of these metals. Cd, Cu, Ni, Pb, Mn, and Co quantity in the edible sections of eggplant grown in contaminated soils exceeded the permissible level for normal plants, posing health hazards to adults and children. For safety issues and food sustainability, our investigation strongly recommends avoiding, possibly, the cultivation of eggplant in contaminated agricultural lands due to their toxic effects even in the long run.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Solanum melongena , Adulto , Cadmio , Niño , Clorofila A , Monitoreo del Ambiente , Humanos , Plomo , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/metabolismo , Solanum melongena/metabolismo , Aguas Residuales
14.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209184

RESUMEN

Seaweeds can play a vital role in plant growth promotion. Two concentrations (5 and 10 mg/mL) of soluble polysaccharides extracted from the green macroalgae Ulva fasciata and Ulva lactuca were tested on Zea mays L. The carbohydrate and protein contents, and antioxidant activities (phenols, ascorbic, peroxidase, and catalase) were measured, as well as the protein banding patterns. The soluble polysaccharides at 5 mg/mL had the greatest effect on the base of all of the parameters. The highest effects of soluble polysaccharides on the Zea mays were 38.453, 96.76, 4, 835, 1.658, 7.462, and 38615.19, mg/mL for carbohydrates, proteins, phenol, µg ascorbic/mL, mg peroxidase/g dry tissue, and units/g tissue of catalase, respectively. The total number of protein bands (as determined by SDS PAGE) was not changed, but the density of the bands was correlated to the treatments. The highest band density and promoting effect were correlated to 5 mg/mL soluble polysaccharide treatments extracted from Ulva fasciata in Zea mays, which can be used as a biofertilizer.


Asunto(s)
Productos Biológicos/química , Polisacáridos/química , Algas Marinas/química , Zea mays/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Fenómenos Químicos , Cromatografía Líquida de Alta Presión , Fotosíntesis , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Pigmentos Biológicos/química , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Algas Marinas/crecimiento & desarrollo , Solubilidad , Análisis Espectral , Relación Estructura-Actividad , Agua , Zea mays/crecimiento & desarrollo
15.
Plants (Basel) ; 10(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34961281

RESUMEN

The present study aims to evaluate the antioxidant and antimicrobial activity of essential oils (EO) extracted from safflower plants grown in the absence and presence of NaCl, 50 mM. Plants treated with 50 mM of NaCl showed decreases in root, stem, and leaf dry weight. Results of the essential oils showed that roots have a higher EO yield than leaves and stems. Salinity caused a decrease in this yield in roots and leaves but not in stems. The compounds identified in the EO extracted from these organs belong to seven chemical classes of which the dominant class is the sesquiterpene hydrocarbons. The chemotype of C. tinctorius EO is variable depending on the organ and the treatment. The safflower essential oils showed low antioxidant, antiradical, and iron-reducing activities compared to those of the positive control (BHT). In an antifungal activity test, only two strains, Aspergillus niger and Candida albicans, were found to be highly sensitive to these oils as they showed almost total inhibition of their growth. For antibacterial activity, safflower EOs showed significant antimicrobial activity against Bacillus subtilis, Bacillus cereus, and Xanthomonas campestris in both control and NaCl-treated plants: for these three strains, total inhibition of growth was noted at 50,000 ppm of EO in leaves and roots; whereas for stems, total inhibition was noted only for the third strain (Xanthomonas campestris). For other strains, this inhibition was variable and weak. Salt was found to have no effect on the activities of safflower EOs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...