Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 880: 163151, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011676

RESUMEN

The increased presence of secondary micro/nanoplastics (MNPLs) in the environment requires urgent studies on their potentially hazardous effects on exposed organisms, including humans. In this context, it is essential to obtain representative MNPL samples for such purposes. In our study, we have obtained true-to-life NPLs resulting from the degradation, via sanding, of opaque PET bottles. Since these bottles contain titanium (TiO2NPs), the resulting MNPLs also contain embedded metal. The obtained PET(Ti)NPLs were extensively characterized from a physicochemical point of view, confirming their nanosized range and their hybrid composition. This is the first time these types of NPLs are obtained and characterized. The preliminary hazard studies show their easy internalization in different cell lines, without apparent general toxicity. The demonstration by confocal microscopy that the obtained NPLs contain Ti samples offers this material multiple advantages. Thus, they can be used in in vivo approaches to determine the fate of NPLs after exposure, escaping from the existing difficulties to follow up MNPLs in biological samples.


Asunto(s)
Microplásticos , Plásticos , Humanos , Plásticos/toxicidad , Titanio
2.
J Hazard Mater ; 439: 129593, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35843083

RESUMEN

Micro and nanoplastics (MNPLs) are emergent environmental pollutants requiring urgent information on their potential risks to human health. One of the problems associated with the evaluation of their undesirable effects is the lack of representative samples, matching those resulting from the environmental degradation of plastic wastes. To such end, we propose an easy method to obtain polyethylene terephthalate nanoplastics from water plastic bottles (PET-NPLs) but, in principle, applicable to any other plastic goods sources. An extensive characterization indicates that the proposed process produces uniform samples of PET-NPLs of around 100 nm, as determined by using AF4 and multi-angle and dynamic light scattering methodologies. An important point to be highlighted is that to avoid the metal contamination resulting from methods using metal blades/burrs for milling, trituration, or sanding, we propose to use diamond burrs to produce metal-free samples. To visualize the toxicological profile of the produced PET-NPLs we have evaluated their ability to be internalized by cells, their cytotoxicity, their ability to induce oxidative stress, and induce DNA damage. In this preliminary approach, we have detected their cellular uptake, but without the induction of significant biological effects. Thus, no relevant increases in toxicity, reactive oxygen species (ROS) induction, or DNA damage -as detected with the comet assay- have been observed. The use of representative samples, as produced in this study, will generate relevant data in the discussion about the potential health risks associated with MNPLs exposures.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA