Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME Commun ; 3(1): 112, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848554

RESUMEN

Environmental virus metagenomes, commonly referred to as "viromes", are typically generated by physically separating virus-like particles (VLPs) from the microbial fraction based on their size and mass. However, most methods used to purify VLPs, enrich extracellular vesicles (EVs) and gene transfer agents (GTAs) simultaneously. Consequently, the sequence space traditionally referred to as a "virome" contains host-associated sequences, transported via EVs or GTAs. We therefore propose to call the genetic material isolated from size-fractionated (0.22 µm) and DNase-treated samples protected environmental DNA (peDNA). This sequence space contains viral genomes, DNA transduced by viruses and DNA transported in EVs and GTAs. Since there is no genetic signature for peDNA transported in EVs, GTAs and virus particles, we rely on the successful removal of contaminating remaining cellular and free DNA when analyzing peDNA. Using marine samples collected from the North Sea, we generated a thoroughly purified peDNA dataset and developed a bioinformatic pipeline to determine the potential origin of the purified DNA. This pipeline was applied to our dataset as well as existing global marine "viromes". Through this pipeline, we identified known GTA and EV producers, as well as organisms with actively transducing proviruses as the source of the peDNA, thus confirming the reliability of our approach. Additionally, we identified novel and widespread EV producers, and found quantitative evidence suggesting that EV-mediated gene transfer plays a significant role in driving horizontal gene transfer (HGT) in the world's oceans.

2.
PLoS Genet ; 19(10): e1010998, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37831715

RESUMEN

Archaeal pleomorphic viruses belonging to the Pleolipoviridae family represent an enigmatic group as they exhibit unique genomic features and are thought to have evolved through recombination with different archaeal plasmids. However, most of our understanding of the diversity and evolutionary trajectories of this clade comes from a handful of isolated representatives. Here we present 164 new genomes of pleolipoviruses obtained from metagenomic data of Australian hypersaline lakes and publicly available metagenomic data. We perform a comprehensive analysis on the diversity and evolutionary relationships of the newly discovered viruses and previously described pleolipoviruses. We propose to classify the viruses into five genera within the Pleolipoviridae family, with one new genus represented only by virus genomes retrieved in this study. Our data support the current hypothesis that pleolipoviruses reshaped their genomes through recombining with multiple different groups of plasmids, which is reflected in the diversity of their predicted replication strategies. We show that the proposed genus Epsilonpleolipovirus has evolutionary ties to pRN1-like plasmids from Sulfolobus, suggesting that this group could be infecting other archaeal phyla. Interestingly, we observed that the genome size of pleolipoviruses is correlated to the presence or absence of an integrase. Analyses of the host range revealed that all but one virus exhibit an extremely narrow range, and we show that the predicted tertiary structure of the spike protein is strongly associated with the host family, suggesting a specific adaptation to the host S-layer glycoprotein organization.


Asunto(s)
Virus de Archaea , Virus , Australia , Virus/genética , Virus de Archaea/genética , Evolución Biológica , Integrasas/genética , Archaea/genética , Genoma Viral/genética
3.
Viruses ; 15(7)2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37515157

RESUMEN

N-glycosylation is a post-translational modification of proteins that occurs across all three domains of life. In Archaea, N-glycosylation is crucial for cell stability and motility, but importantly also has significant implications for virus-host interactions. While some archaeal viruses present glycosylated proteins or interact with glycosylated host proteins, the direct influence of N-glycosylation on archaeal virus-host interactions remains to be elucidated. In this study, we generated an N-glycosylation-deficient mutant of Halorubrum lacusprofundi, a halophilic archaeon commonly used to study cold adaptation, and examined the impact of compromised N-glycosylation on the infection dynamics of two very diverse viruses. While compromised N-glycosylation had no influence on the life cycle of the head-tailed virus HRTV-DL1, we observed a significant effect on membrane-containing virus HFPV-1. Both intracellular genome numbers and extracellular virus particle numbers of HFPV-1 were increased in the mutant strain, which we attribute to instability of the surface-layer which builds the protein envelope of the cell. When testing the impact of compromised N-glycosylation on the life cycle of plasmid vesicles, specialized membrane vesicles that transfer a plasmid between host cells, we determined that plasmid vesicle stability is strongly dependent on the host glycosylation machinery. Our study thus provides important insight into the role of N-glycosylation in virus-host interactions in Archaea, while pointing to how this influence strongly differs amongst various viruses and virus-like elements.


Asunto(s)
Virus de Archaea , Halorubrum , Virus , Glicosilación , Interacciones Microbiota-Huesped , Virus/genética , Virus de Archaea/genética
4.
Microorganisms ; 12(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276173

RESUMEN

Even though viruses and plasmids are both drivers of horizontal gene transfer, they differ fundamentally in their mode of transfer. Virus genomes are enclosed in virus capsids and are not dependent on cell-to-cell contacts for their dissemination. In contrast, the transfer of plasmids most often requires physical contact between cells. However, plasmid pR1SE of Halorubrum lacusprofundi is disseminated between cells, independent of cell-cell contacts, in specialized membrane vesicles that contain plasmid proteins. In this study, we searched for pR1SE-like elements in public databases and a metagenomics dataset from Australian salt lakes and identified 40 additional pR1SE-like elements in hypersaline environments worldwide. Herein, these elements are named apHPVs (archaeal plasmids of haloarchaea potentially transferred in plasmid vesicles). They share two sets of closely related proteins with conserved synteny, strongly indicating an organization into different functional clusters. We find that apHPVs, besides transferring themselves, have the potential to transfer large fragments of DNA between host cells, including virus defense systems. Most interestingly, apHPVs likely play an important role in the evolution of viruses and plasmids in haloarchaea, as they appear to recombine with both of them. This further supports the idea that plasmids and viruses are not distinct but closely related mobile genetic elements.

5.
Proc Natl Acad Sci U S A ; 119(35): e2205037119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994644

RESUMEN

Viruses are important ecological, biogeochemical, and evolutionary drivers in every environment. Upon infection, they often cause the lysis of the host cell. However, some viruses exhibit alternative life cycles, such as chronic infections without cell lysis. The nature and the impact of chronic infections in prokaryotic host organisms remains largely unknown. Here, we characterize a novel haloarchaeal virus, Haloferax volcanii pleomorphic virus 1 (HFPV-1), which is currently the only virus infecting the model haloarchaeon Haloferax volcanii DS2, and demonstrate that HFPV-1 and H. volcanii are a great model system to study virus-host interactions in archaea. HFPV-1 is a pleomorphic virus that causes a chronic infection with continuous release of virus particles, but host and virus coexist without cell lysis or the appearance of resistant cells. Despite an only minor impact of the infection on host growth, we uncovered an extensive remodeling of the transcriptional program of the host (up to 1,049 differentially expressed genes). These changes are highlighted by a down-regulation of two endogenous provirus regions in the host genome, and we show that HFPV-1 infection is strongly influenced by a cross-talk between HFPV-1 and one of the proviruses mediated by a superinfection-like exclusion mechanism. Furthermore, HFPV-1 has a surprisingly wide host range among haloarchaea, and purified virus DNA can cause an infection after transformation into the host, making HFPV-1 a candidate for being developed into a genetic tool for a range of so far inaccessible haloarchaea.


Asunto(s)
Proteínas Arqueales , Haloferax volcanii , Interacciones Microbiota-Huesped , Infección Persistente , Provirus , Virosis , Proteínas Arqueales/metabolismo , Genoma , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Haloferax volcanii/virología , Interacciones Microbiota-Huesped/fisiología , Humanos , Infección Persistente/terapia , Infección Persistente/virología , Provirus/genética , Provirus/aislamiento & purificación , Provirus/metabolismo , Virosis/metabolismo , Virosis/virología
7.
mSystems ; 6(4): e0039621, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34374561

RESUMEN

The Southern Ocean (SO) represents up to one-fifth of the total carbon drawdown worldwide. Intense selective pressures (low temperature, high UV radiation, and strong seasonality) and physical isolation characterize the SO, serving as a "natural" laboratory for the study of ecogenomics and unique adaptations of endemic viral populations. Here, we report 2,416 novel viral genomes from the SO, obtained from newly sequenced viral metagenomes in combination with mining of publicly available data sets, which represents a 25% increase in the SO viral genomes reported to date. They comprised 567 viral clusters (defined as approximately genus-level groups), with 186 genera endemic to the SO, demonstrating that the SO viral community is predominantly constituted by a large pool of genetically divergent viral species from widespread viral families. The predicted proteome from SO viruses revealed that several protein clusters related to cold-shock-event responses and quorum-sensing mechanisms involved in the lysogenic-lytic cycle shift decision were under positive selection, which is ultimately important for fine adaptation of viral populations in response to the strong selective pressures of the SO. Finally, changes in the hydrophobicity patterns and amino acid frequencies suggested marked temperature-driven genetic selection of the SO viral proteome. Our data provide valuable insights into how viruses adapt and remain successful in this extreme polar marine environment. IMPORTANCE Viruses are the most abundant biologic entities in marine systems and strongly influence the microbial community composition and diversity. However, little is known about viral communities' adaptation and diversification in the ocean. In this work, we take advantage of the geographical isolation and the intense selective pressures of the SO, to which viruses are exposed, to identify potential viral adaptations due to positive environmental selection and dispersal limitation. To that end, we recovered more than two thousand novel viral genomes, revealing a high degree of divergence in these SO endemic communities. Furthermore, we describe remarkable viral adaptations in amino acid frequencies and accessory proteins related to cold shock response and quorum sensing that allow them to thrive at lower temperatures. Consequently, our work greatly expands the understanding of the diversification of the viral communities of the SO and their particular adaptations to low temperatures.

8.
mSphere ; 6(4): e0052521, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34406852

RESUMEN

Microbial proton-pumping rhodopsins are considered the simplest strategy among phototrophs to conserve energy from light. Proteorhodopsins are the most studied rhodopsins thus far because of their ubiquitous presence in the ocean, except in Antarctica, where they remain understudied. We analyzed proteorhodopsin abundance and transcriptional activity in the Western Antarctic coastal seawaters. Combining quantitative PCR (qPCR) and metagenomics, the relative abundance of proteorhodopsin-bearing bacteria accounted on average for 17, 3.5, and 29.7% of the bacterial community in Chile Bay (South Shetland Islands) during 2014, 2016, and 2017 summer-autumn, respectively. The abundance of proteorhodopsin-bearing bacteria changed in relation to environmental conditions such as chlorophyll a and temperature. Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were the main bacteria that transcribed the proteorhodopsin gene during day and night. Although green light-absorbing proteorhodopsin genes were more abundant than blue-absorbing ones, the latter were transcribed more intensely, resulting in >50% of the proteorhodopsin transcripts during the day and night. Flavobacteriia were the most abundant proteorhodopsin-bearing bacteria in the metagenomes; however, Alphaproteobacteria and Gammaproteobacteria were more represented in the metatranscriptomes, with qPCR quantification suggesting the dominance of the active SAR11 clade. Our results show that proteorhodopsin-bearing bacteria are prevalent in Antarctic coastal waters in late austral summer and early autumn, and their ecological relevance needs to be elucidated to better understand how sunlight energy is used in this marine ecosystem. IMPORTANCE Proteorhodopsin-bearing microorganisms in the Southern Ocean have been overlooked since their discovery in 2000. The present study identify taxonomy and quantify the relative abundance of proteorhodopsin-bearing bacteria and proteorhodopsin gene transcription in the West Antarctic Peninsula's coastal waters. This information is crucial to understand better how sunlight enters this marine environment through alternative ways unrelated to chlorophyll-based strategies. The relative abundance of proteorhodopsin-bearing bacteria seems to be related to environmental parameters (e.g., chlorophyll a, temperature) that change yearly at the coastal water of the West Antarctic Peninsula during the austral late summers and early autumns. Proteorhodopsin-bearing bacteria from Antarctic coastal waters are potentially able to exploit both the green and blue spectrum of sunlight and are a prevalent group during the summer in this polar environment.


Asunto(s)
Metagenómica/métodos , Microbiota/genética , Procesos Fototróficos , Rodopsinas Microbianas/genética , Agua de Mar/microbiología , Alphaproteobacteria/química , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Regiones Antárticas , Ecosistema , Flavobacteriaceae/química , Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , Filogenia , Rodopsina/metabolismo , Rodopsinas Microbianas/análisis
9.
Front Genet ; 11: 568223, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250920

RESUMEN

Several cyanobacterial species are dominant primary producers in hot spring microbial mats. To date, hot spring cyanobacterial taxonomy, as well as the evolution of their genomic adaptations to high temperatures, are poorly understood, with genomic information currently available for only a few dominant genera, including Fischerella and Synechococcus. To address this knowledge gap, the present study expands the genomic landscape of hot spring cyanobacteria and traces the phylum-wide genomic consequences of evolution in high temperature environments. From 21 globally distributed hot spring metagenomes, with temperatures between 32 and 75°C, 57 medium- and high-quality cyanobacterial metagenome-assembled genomes were recovered, representing taxonomic novelty for 1 order, 3 families, 15 genera and 36 species. Comparative genomics of 93 hot spring genomes (including the 57 metagenome-assembled genomes) and 66 non-thermal genomes, showed that the former have smaller genomes and a higher GC content, as well as shorter proteins that are more hydrophilic and basic, when compared to the non-thermal genomes. Additionally, the core accessory orthogroups from the hot spring genomes of some genera had a greater abundance of functional categories, such as inorganic ion metabolism, translation and post-translational modifications. Moreover, hot spring genomes showed increased abundances of inorganic ion transport and amino acid metabolism, as well as less replication and transcription functions in the protein coding sequences. Furthermore, they showed a higher dependence on the CRISPR-Cas defense system against exogenous nucleic acids, and a reduction in secondary metabolism biosynthetic gene clusters. This suggests differences in the cyanobacterial response to environment-specific microbial communities. This phylum-wide study provides new insights into cyanobacterial genomic adaptations to a specific niche where they are dominant, which could be essential to trace bacterial evolution pathways in a warmer world, such as the current global warming scenario.

10.
Front Microbiol ; 10: 1014, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139164

RESUMEN

In Antarctic coastal waters where nutrient limitations are low, viruses are expected to play a major role in the regulation of bloom events. Despite this, research in viral identification and dynamics is scarce, with limited information available for the Southern Ocean (SO). This study presents an integrative-omics approach, comparing variation in the viral and microbial active communities on two contrasting sample conditions from a diatom-dominated phytoplankton bloom occurring in Chile Bay in the West Antarctic Peninsula (WAP) in the summer of 2014. The known viral community, initially dominated by Myoviridae family (∼82% of the total assigned reads), changed to become dominated by Phycodnaviridae (∼90%), while viral activity was predominantly driven by dsDNA members of the Phycodnaviridae (∼50%) and diatom infecting ssRNA viruses (∼38%), becoming more significant as chlorophyll a increased. A genomic and phylogenetic characterization allowed the identification of a new viral lineage within the Myoviridae family. This new lineage of viruses infects Pseudoalteromonas and was dominant in the phage community. In addition, a new Phycodnavirus (PaV) was described, which is predicted to infect Phaeocystis antarctica, the main blooming haptophyte in the SO. This work was able to identify the changes in the main viral players during a bloom development and suggests that the changes observed in the virioplankton could be used as a model to understand the development and decay of blooms that occur throughout the WAP.

11.
FEMS Microbiol Lett ; 365(10)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29788084

RESUMEN

Phytoplankton biomass during the austral summer is influenced by freezing and melting cycles as well as oceanographic processes that enable nutrient redistribution in the West Antarctic Peninsula (WAP). Microbial functional capabilities, metagenomic and metatranscriptomic activities as well as inorganic 13C- and 15N-assimilation rates were studied in the surface waters of Chile Bay during two contrasting summer periods in 2014. Concentrations of Chlorophyll a (Chla) varied from 0.3 mg m-3 in February to a maximum of 2.5 mg m-3 in March, together with a decrease in nutrients; however, nutrients were never depleted. The microbial community composition remained similar throughout both sampling periods; however, microbial abundance and activity changed with Chla levels. An increased biomass of Bacillariophyta, Haptophyceae and Cryptophyceae was observed along with night-grazing activity of Dinophyceae and ciliates (Alveolates). During high Chla conditions, HCO3- uptake rates during daytime incubations increased 5-fold (>2516 nmol C L-1 d-1), and increased photosynthetic transcript numbers that were mainly associated with cryptophytes; meanwhile night time NO3- (>706 nmol N L-1 d-1) and NH4+ (41.7 nmol N L-1 d-1) uptake rates were 2- and 3-fold higher, respectively, due to activity from Alpha-/Gammaproteobacteria and Bacteroidetes (Flavobacteriia). Due to a projected acceleration in climate change in the WAP, this information is valuable for predicting the composition and functional changes in Antarctic microbial communities.


Asunto(s)
Bacterias/metabolismo , Microbiota , Fitoplancton/metabolismo , Agua de Mar/microbiología , Regiones Antárticas , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ecosistema , Eucariontes/clasificación , Eucariontes/genética , Eucariontes/crecimiento & desarrollo , Eucariontes/metabolismo , Fotosíntesis , Fitoplancton/clasificación , Fitoplancton/genética , Fitoplancton/crecimiento & desarrollo , Estaciones del Año , Agua de Mar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...