Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Child Adolesc Psychiatry Ment Health ; 17(1): 112, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777792

RESUMEN

BACKGROUND: Despite the prevalence of Autism Spectrum Disorder (ASD) globally, there's a knowledge gap pertaining to autism in Arabic nations. Recognizing the need for validated biomarkers for ASD, our study leverages eye-tracking technology to understand gaze patterns associated with ASD, focusing on joint attention (JA) and atypical gaze patterns during face perception. While previous studies typically evaluate a single eye-tracking metric, our research combines multiple metrics to capture the multidimensional nature of autism, focusing on dwell times on eyes, left facial side, and joint attention. METHODS: We recorded data from 104 participants (41 neurotypical, mean age: 8.21 ± 4.12 years; 63 with ASD, mean age 8 ± 3.89 years). The data collection consisted of a series of visual stimuli of cartoon faces of humans and animals, presented to the participants in a controlled environment. During each stimulus, the eye movements of the participants were recorded and analyzed, extracting metrics such as time to first fixation and dwell time. We then used these data to train a number of machine learning classification algorithms, to determine if these biomarkers can be used to diagnose ASD. RESULTS: We found no significant difference in eye-dwell time between autistic and control groups on human or animal eyes. However, autistic individuals focused less on the left side of both human and animal faces, indicating reduced left visual field (LVF) bias. They also showed slower response times and shorter dwell times on congruent objects during joint attention (JA) tasks, indicating diminished reflexive joint attention. No significant difference was found in time spent on incongruent objects during JA tasks. These results suggest potential eye-tracking biomarkers for autism. The best-performing algorithm was the random forest one, which achieved accuracy = 0.76 ± 0.08, precision = 0.78 ± 0.13, recall = 0.84 ± 0.07, and F1 = 0.80 ± 0.09. CONCLUSIONS: Although the autism group displayed notable differences in reflexive joint attention and left visual field bias, the dwell time on eyes was not significantly different. Nevertheless, the machine algorithm model trained on these data proved effective at diagnosing ASD, showing the potential of these biomarkers. Our study shows promising results and opens up potential for further exploration in this under-researched geographical context.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35270653

RESUMEN

Clinicians urgently need reliable and stable tools to predict the severity of COVID-19 infection for hospitalized patients to enhance the utilization of hospital resources and supplies. Published COVID-19 related guidelines are frequently being updated, which impacts its utilization as a stable go-to resource for informing clinical and operational decision-making processes. In addition, many COVID-19 patient-level severity prediction tools that were developed during the early stages of the pandemic failed to perform well in the hospital setting due to many challenges including data availability, model generalization, and clinical validation. This study describes the experience of a large tertiary hospital system network in the Middle East in developing a real-time severity prediction tool that can assist clinicians in matching patients with appropriate levels of needed care for better management of limited health care resources during COVID-19 surges. It also provides a new perspective for predicting patients' COVID-19 severity levels at the time of hospital admission using comprehensive data collected during the first year of the pandemic in the hospital. Unlike many previous studies for a similar population in the region, this study evaluated 4 machine learning models using a large training data set of 1386 patients collected between March 2020 and April 2021. The study uses comprehensive COVID-19 patient-level clinical data from the hospital electronic medical records (EMR), vital sign monitoring devices, and Polymerase Chain Reaction (PCR) machines. The data were collected, prepared, and leveraged by a panel of clinical and data experts to develop a multi-class data-driven framework to predict severity levels for COVID-19 infections at admission time. Finally, this study provides results from a prospective validation test conducted by clinical experts in the hospital. The proposed prediction framework shows excellent performance in concurrent validation (n=462 patients, March 2020-April 2021) with highest discrimination obtained with the random forest classification model, achieving a macro- and micro-average area under receiver operating characteristics curve (AUC) of 0.83 and 0.87, respectively. The prospective validation conducted by clinical experts (n=185 patients, April-May 2021) showed a promising overall prediction performance with a recall of 78.4-90.0% and a precision of 75.0-97.8% for different severity classes.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Registros Electrónicos de Salud , Humanos , Aprendizaje Automático , Curva ROC , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...