Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(20): 14221-14232, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38690104

RESUMEN

In the exploration of perovskite materials devoid of lead and appropriate for capturing solar energy, a recent finding has surfaced concerning Cs2ZrCl6. This compound has attracted interest as a potential candidate, displaying advantageous optical and electrical features, coupled with remarkable durability under environmental stresses. This research outlines the effective production of non-toxic metal halide nanoparticles of Cs2ZrCl6 using the gradual cooling technique. Thorough examinations have been conducted to explore the structural, optical, and dielectric traits. Over the frequency range of 101-106 Hz, the dielectric constant, loss factor, electric modulus, and electrical conductivity of Cs2ZrCl6 exhibit a strong dependence on temperature. The Nyquist plot confirms the distinct contributions of grains and grain boundaries to the total impedance. In the high-frequency region, the dielectric constant tends to increase with temperature. In accordance with the modified Kohlrausch-Williams-Watts (KWW) equation, an asymmetric nature corresponding to the non-Debye type is observed in the electric modulus spectra at different temperatures. Furthermore, the imaginary part of the electric modulus spectrum shifts from the non-Debye type towards the Debye type with increasing temperature, despite not obtaining an exact Debye response. The frequency-dependent behavior of AC conductivity has been modeled using Joncher's universal law. The conduction mechanism within the Cs2ZrCl6 compound is attributed to the small polaron tunneling model (NSPT). Furthermore, Cs2ZrCl6 has the potential to function as an energy harvesting device due to its elevated dielectric constant combined with minimal dielectric loss.

2.
ACS Omega ; 8(18): 15960-15967, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179645

RESUMEN

In the present research work, bismuth ferrite mullite type Bi2Fe4-xZnxO9 (0.0 ≤ x ≤ 0.05) nanostructures are prepared by a chemical coprecipitation method and the effect of Zn doping concentration on the structural, surface topography, and dielectric properties is reported. The powder X-ray diffraction pattern of the Bi2Fe4-xZnxO9 (0.0 ≤ x ≤ 0.05) nanomaterial shows an orthorhombic crystal structure. Using Scherer's formula, the crystallite sizes of the nanomaterial Bi2Fe4-xZnxO9 (0.0 ≤ x ≤ 0.05) have been calculated and found to be 23.54 and 45.65 nm, respectively. The results of the atomic force microscopy (AFM) investigations show that spherical shape nanoparticles have grown and are densely packed around each other. AFM/scanning electron microscopy images, however, also illustrate that spherical nanoparticles transform into nanorod-like nanostructures with an increase in Zn concentrations. The transmission electron micrography images of Bi2Fe4-xZnxO9 (x = 0.05) showed elongated/spherical shape grains homogeneously distributed throughout the inside of the surface of the sample. The dielectric constants of Bi2Fe4-xZnxO9 (0.0 ≤ x ≤ 0.05) materials have been calculated and found to be 32.95 and 55.32. It is found that the dielectric properties improve with an increase in the Zn doping concentration, making it a good potential contender for multifunctional modern technological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...