Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasitol Int ; 98: 102814, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806551

RESUMEN

Acanthamoeba are ubiquitously distributed in the environment and can cause infection of the central nervous system as well a sight-threatening eye infection. Herein, the potential anti-amoebic activity of a series of sulfonate/sulfamate derivatives against pathogenic A. castellanii was evaluated. These compounds were tested using several assays namely amoebicidal, adhesion, excystation, cytotoxic, and cytopathogenicity. Amoebicidal assays revealed that the selected compounds reduced amoebae viability significantly (P < 0.05), and exhibited IC50 values at two-digit micromolar concentrations. Sulfamate derivatives 1j & 1k inhibited 50% of amoebae at 30.65 µM and 27.21 µM, respectively. The tested compounds blocked amoebae binding to host cells as well as inhibited amoebae excystation. Notably, the selected derivatives exhibited minimal human cell cytotoxicity but reduced parasite-mediated host cell damage. Overall, our study showed that sulfamate derivatives 1j & 1k have anti-amoebic potential and offer a promising avenue in the development of potential anti-amoebic drug candidates.


Asunto(s)
Acanthamoeba castellanii , Amebicidas , Humanos , Acanthamoeba castellanii/genética , Ácidos Sulfónicos/farmacología , Alcanosulfonatos , Genotipo
2.
Int Microbiol ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015290

RESUMEN

Acanthamoeba are free living amoebae that are the causative agent of keratitis and granulomatous amoebic encephalitis. Alpha-Mangostin (AMS) is a significant xanthone; that demonstrates a wide range of biological activities. Here, the anti-amoebic activity of α-Mangostin and its silver nano conjugates (AMS-AgNPs) were evaluated against pathogenic A. castellanii trophozoites and cysts in vitro. Amoebicidal assays showed that both AMS and AMS-AgNPs inhibited the viability of A. castellanii dose-dependently, with an IC50 of 88.5 ± 2.04 and 20.2 ± 2.17 µM, respectively. Both formulations inhibited A. castellanii-mediated human keratinocyte cell cytopathogenicity. Functional assays showed that both samples caused apoptosis through the mitochondrial pathway and reduced mitochondrial membrane potential and ATP production, while increasing reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome-c reductase in the cytosol. Whole transcriptome sequencing of A. castellanii showed the expression of 826 genes, with 447 genes being up-regulated and 379 genes being down-regulated post treatment. The Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority of genes were linked to apoptosis, autophagy, RAP1, AGE-RAGE and oxytocin signalling pathways. Seven genes (PTEN, H3, ARIH1, SDR16C5, PFN, glnA GLUL, and SRX1) were identified as the most significant (Log2 (FC) value 4) for molecular mode of action in vitro. Future in vivo studies with AMS and nanoconjugates are needed to realize the clinical potential of this work.

3.
Arch Microbiol ; 205(12): 360, 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37898989

RESUMEN

Acanthamoeba castellanii is the causative agent of fatal encephalitis and blinding keratitis. Current therapies remain a challenge, hence there is a need to search for new therapeutics. Here, we tested embelin (EMB) and silver nanoparticles doped with embelin (EMB-AgNPs) against A. castellanii. Using amoebicidal assays, the results revealed that both compounds inhibited the viability of Acanthamoeba, having an IC50 of 27.16 ± 0.63 and 13.63 ± 1.08 µM, respectively, while causing minimal cytotoxicity against HaCaT cells in vitro. The findings suggest that both samples induced apoptosis through the mitochondria-mediated pathway. Differentially expressed genes analysis showed that 652 genes were uniquely expressed in treated versus untreated cells, out of which 191 were significantly regulated in the negative control vs. conjugate. Combining the analysis, seven genes (ARIH1, RAP1, H3, SDR16C5, GST, SRX1, and PFN) were highlighted as the most significant (Log2 (FC) value ± 4) for the molecular mode of action in vitro. The KEGG analysis linked most of the genes to apoptosis, the oxidative stress signaling pathway, cytochrome P450, Rap1, and the oxytocin signaling pathways. In summary, this study provides a thorough framework for developing therapeutic agents against microbial infections using EMB and EMB-AgNPs.


Asunto(s)
Acanthamoeba castellanii , Nanopartículas del Metal , Plata/farmacología , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...