Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomech Model Mechanobiol ; 23(2): 675-685, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38217747

RESUMEN

Premature fusion of craniofacial joints, i.e. sutures, is a major clinical condition. This condition affects children and often requires numerous invasive surgeries to correct. Minimally invasive external loading of the skull has shown some success in achieving therapeutic effects in a mouse model of this condition, promising a new non-invasive treatment approach. However, our fundamental understanding of the level of deformation that such loading has induced across the sutures, leading to the effects observed is severely limited, yet crucial for its scalability. We carried out a series of multiscale characterisations of the loading effects on normal and craniosynostotic mice, in a series of in vivo and ex vivo studies. This involved developing a custom loading setup as well as software for its control and a novel in situ CT strain estimation approach following the principles of digital volume correlation. Our findings highlight that this treatment may disrupt bone formation across the sutures through plastic deformation of the treated suture. The level of permanent deformations observed across the coronal suture after loading corresponded well with the apparent strain that was estimated. This work provides invaluable insight into the level of mechanical forces that may prevent early fusion of cranial joints during the minimally invasive treatment cycle and will help the clinical translation of the treatment approach to humans.


Asunto(s)
Craneosinostosis , Cráneo , Humanos , Niño , Ratones , Animales , Cráneo/diagnóstico por imagen , Suturas Craneales/cirugía , Craneosinostosis/cirugía , Modelos Animales de Enfermedad , Osteogénesis
2.
Sensors (Basel) ; 22(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36298309

RESUMEN

Robotic surgical platforms have helped to improve minimally invasive surgery; however, limitations in their force feedback and force control can result in undesirable tissue trauma or tissue slip events. In this paper, we investigate a sensing method for the early detection of slip events when grasping soft tissues, which would allow surgical robots to take mitigating action to prevent tissue slip and maintain stable grasp control while minimising the applied gripping force, reducing the probability of trauma. The developed sensing concept utilises a curved grasper face to create areas of high and low normal, and thus frictional, force. In the areas of low normal force, there is a higher probability that the grasper face will slip against the tissue. If the grasper face is separated into a series of independent movable islands, then by tracking their displacement it will be possible to identify when the areas of low normal force first start to slip while the remainder of the tissue is still held securely. The system was evaluated through the simulated grasping and retraction of tissue under conditions representative of surgical practice using silicone tissue simulants and porcine liver samples. It was able to successfully detect slip before gross slip occurred with a 100% and 77% success rate for the tissue simulant and porcine liver samples, respectively. This research demonstrates the efficacy of this sensing method and the associated sensor system for detecting the occurrence of tissue slip events during surgical grasping and retraction.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Porcinos , Animales , Procedimientos Quirúrgicos Robotizados/métodos , Fuerza de la Mano , Retroalimentación , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Siliconas , Tacto
3.
Sci Rep ; 12(1): 9693, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690633

RESUMEN

Children with syndromic forms of craniosynostosis undergo a plethora of surgical interventions to resolve the clinical features caused by the premature fusion of cranial sutures. While surgical correction is reliable, the need for repeated rounds of invasive treatment puts a heavy burden on the child and their family. This study explores a non-surgical alternative using mechanical loading of the cranial joints to prevent or delay craniofacial phenotypes associated with Crouzon syndrome. We treated Crouzon syndrome mice before the onset of craniosynostosis by cyclical mechanical loading of cranial joints using a custom designed set-up. Cranial loading applied to the frontal bone partially restores normal skull morphology, significantly reducing the typical brachycephalic appearance. This is underpinned by the delayed closure of the coronal suture and of the intersphenoidal synchondrosis. This study provides a novel treatment alternative for syndromic craniosynostosis which has the potential to be an important step towards replacing, reducing or refining the surgical treatment of all craniosynostosis patients.


Asunto(s)
Disostosis Craneofacial , Craneosinostosis , Animales , Suturas Craneales/cirugía , Disostosis Craneofacial/cirugía , Craneosinostosis/genética , Craneosinostosis/cirugía , Hueso Frontal , Humanos , Ratones , Fenotipo , Cráneo/cirugía
4.
J Stomatol Oral Maxillofac Surg ; 123(5): e342-e348, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35526830

RESUMEN

Intentional skull deformations have been practiced by every human population, from the prehistoric times until the XXth century. In Europe, they were specifically prevalent in the region of Toulouse, France. The soft-tissue modifications due to such practices are not well characterized in the literature due to the rarity of photographic data. Most studies on skull deformations are thus based on skeletal remains. Here we performed a controlled geometric morphometric assessment of 31 frontal pictures and 70 lateral pictures of individuals from Toulouse with intentional deformations extracted from two XIXth century historical French photographic archives. We also measured the forces exerted on the skull vault by the traditional deformation device from Toulouse using a 3D-printed skull and pressure sensors. We showed that individuals with Toulouse deformations have distinctive facial features, caused by moderate forces exerted on the skull vault. Our results exhibit and quantify for the first time the real face of intentional skull deformations, which are a ubiquitous and distinctive feature of the human species.


Asunto(s)
Cabeza , Cráneo , Europa (Continente) , Francia , Humanos
5.
IEEE Trans Biomed Eng ; 69(9): 2850-2859, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35230945

RESUMEN

This study presents the design and development of an instrumented splint for measuring the biomechanical effects of hand splinting and for assessing interface loading characteristics for people with arthritis. Sixteen multi-axial soft load-sensing nodes were mounted on the splint-skin interface of a custom 3D printed thumb splint. The splint was used to measure the interface forces between splint and hand in 12 healthy participants in 6 everyday tasks. Forces were compared between a baseline relaxed hand position and during states of active use. These data were used to generate a measure of sensor activity across the splint surface. Through direct comparison with a commercial splint, the 3D printed splint was deemed to provide similar levels of support. Observation of the activity across the 16 sensors showed that 'active' areas of the splint surface varied between tasks but were commonly focused at the base of the thumb. Our findings show promise in the ability to detect the changing forces imparted on the hand by the splint surface, objectively characterising their behaviour. This opens the opportunity for future study into the biomechanical effects of splints on arthritic thumbs to improve this important intervention and improve quality of life.


Asunto(s)
Calidad de Vida , Férulas (Fijadores) , Mano , Fuerza de la Mano , Humanos , Pulgar
6.
Sensors (Basel) ; 21(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799641

RESUMEN

Soft sensors are essential for robotic systems to safely interact with humans and the environment. Although significant research has been carried out in the field of soft tactile sensing, most of these sensors are restricted to a predefined geometry and a fixed measurement range, hence limiting their application. This paper introduces a novel approach to soft sensing by proposing a soft load-sensing unit with an adjustable mechanical compliance achieved using an elastically inflatable fluidic dome. The sensor consists of a three-dimensional Hall-effect sensor, above which is a magnet whose movement is modulated by an intermediate elastomeric dome structure. Sensor configurations were designed and fabricated using three different silicone rubbers to cover '00-10' and '20A' durometer shore hardness scales. We demonstrated that the compliance of the sensor could be dynamically tuned by changing the internal pressure of the inflatable fluidic dome in all configurations. We performed finite element simulations to determine the reaction force of the sensor under load as well as the stresses within the internal structural behavior, which are not possible to capture experimentally. The proposed soft sensor has the potential to be readily adapted for use in various soft robotic applications of differing size, compliance range, and safety requirements.


Asunto(s)
Robótica , Tacto , Dureza , Humanos
7.
J Neuroeng Rehabil ; 18(1): 15, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33485365

RESUMEN

BACKGROUND: Hand rehabilitation is core to helping stroke survivors regain activities of daily living. Recent studies have suggested that the use of electroencephalography-based brain-computer interfaces (BCI) can promote this process. Here, we report the first systematic examination of the literature on the use of BCI-robot systems for the rehabilitation of fine motor skills associated with hand movement and profile these systems from a technical and clinical perspective. METHODS: A search for January 2010-October 2019 articles using Ovid MEDLINE, Embase, PEDro, PsycINFO, IEEE Xplore and Cochrane Library databases was performed. The selection criteria included BCI-hand robotic systems for rehabilitation at different stages of development involving tests on healthy participants or people who have had a stroke. Data fields include those related to study design, participant characteristics, technical specifications of the system, and clinical outcome measures. RESULTS: 30 studies were identified as eligible for qualitative review and among these, 11 studies involved testing a BCI-hand robot on chronic and subacute stroke patients. Statistically significant improvements in motor assessment scores relative to controls were observed for three BCI-hand robot interventions. The degree of robot control for the majority of studies was limited to triggering the device to perform grasping or pinching movements using motor imagery. Most employed a combination of kinaesthetic and visual response via the robotic device and display screen, respectively, to match feedback to motor imagery. CONCLUSION: 19 out of 30 studies on BCI-robotic systems for hand rehabilitation report systems at prototype or pre-clinical stages of development. We identified large heterogeneity in reporting and emphasise the need to develop a standard protocol for assessing technical and clinical outcomes so that the necessary evidence base on efficiency and efficacy can be developed.


Asunto(s)
Interfaces Cerebro-Computador , Mano/fisiología , Destreza Motora/fisiología , Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular/instrumentación , Actividades Cotidianas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rehabilitación de Accidente Cerebrovascular/métodos
8.
Proc Inst Mech Eng H ; 235(1): 3-16, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32928047

RESUMEN

Complications during childbirth result in the need for clinicians to use 'assisted delivery' in over 12% of cases (UK). After more than 50 years in clinical practice, vacuum assisted delivery (VAD) devices remain a mainstay in physically assisting child delivery; sometimes preferred over forceps due to their ease of use and reduced maternal morbidity. Despite their popularity and enduring track-record, VAD devices have shown little evidence of innovation or design change since their inception. In addition, evidence on the safety and functionality of VAD devices remains limited but does present opportunities for improvements to reduce adverse clinical outcomes. Consequently in this review we examine the literature and patent landscape surrounding VAD biomechanics, design evolution and performance from an engineering perspective, aiming to collate the limited but valuable information from a disparate field and provide a series of recommendations to inform future research into improved, safer, VAD systems.


Asunto(s)
Obstetricia , Niño , Femenino , Humanos , Embarazo , Extracción Obstétrica por Aspiración
9.
IEEE Trans Biomed Eng ; 67(11): 3262-3273, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32203013

RESUMEN

GOAL: Tread patterns are widely used to increase traction on different substrates, with the tread scale, geometry and material being tailored to the application. This work explores the efficacy of using macro-scale tread patterns for a medical application involving a colon substrate - renowned for its low friction characteristics. METHODS: Current literature was first summarized before an experimental approach was used, based on a custom test rig with ex vivo porcine colon, to assess different macro-scale tread patterns. Performance was based on increasing traction while avoiding significant trauma. Repeated testing (n = 16) was used to obtain robust results. RESULTS: A macro-scale tread pattern can increase the traction coefficient significantly, with a static traction coefficient of 0.74 ± 0.22 and a dynamic traction coefficient of 0.35 ± 0.04 compared to a smooth (on the macro-scale) Control (0.132 ± 0.055 and 0.054 ± 0.015, respectively). Decreasing the scale and spacing between the tread features reduced apparent trauma but also reduced the traction coefficient. CONCLUSION: Significant traction can be achieved on colon tissue using a macro-scale tread but a compromise between traction (large feature sizes) and trauma (small feature sizes) may have to be made. SIGNIFICANCE: This work provides greater insight into the complex frictional mechanisms of the intestine and gives suggestions for developing functional tread surfaces for a wide range of clinical applications.


Asunto(s)
Intestinos , Tracción , Animales , Fricción , Porcinos
10.
Sensors (Basel) ; 20(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092865

RESUMEN

Splinting techniques are widely used in medicine to inhibit the movement of arthritic joints. Studies into the effectiveness of splinting as a method of pain reduction have generally yielded positive results, however, no significant difference has been found in clinical outcomes between splinting types. Tactile sensing has shown great promise for the integration into splinting devices and may offer further information into applied forces to find the most effective methods of splinting. Hall effect-based tactile sensors are of particular interest in this application owing to their low-cost, small size, and high robustness. One complexity of the sensors is the relationship between the elastomer geometry and the measurement range. This paper investigates the design parameters of Hall effect tactile sensors for use in hand splinting. Finite element simulations are used to locate the areas in which sensitivity is high in order to optimise the deflection range of the sensor. Further simulations then investigate the mechanical response and force ranges of the elastomer layer under loading which are validated with experimental data. A 4 mm radius, 3 mm-thick sensor is identified as meeting defined sensing requirements for range and sensitivity. A prototype sensor is produced which exhibits a pressure range of 45 kPa normal and 6 kPa shear. A proof of principle prototype demonstrates how this can be integrated to form an instrumented splint with multi-axis sensing capability and has the potential to inform clinical practice for improved splinting.


Asunto(s)
Fenómenos Magnéticos , Equipo Ortopédico , Férulas (Fijadores) , Tacto/fisiología , Calibración , Simulación por Computador , Elastómeros/química , Diseño de Equipo , Análisis de Elementos Finitos
11.
IEEE Trans Biomed Eng ; 67(7): 1989-2004, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31899409

RESUMEN

Diabetes is highly prevalent throughout the world and imposes a high economic cost on countries at all income levels. Foot ulceration is one devastating consequence of diabetes, which can lead to amputation and mortality. Clinical assessment of diabetic foot ulcer (DFU) is currently subjective and limited, impeding effective diagnosis, treatment and prevention. Studies have shown that pressure and shear stress at the plantar surface of the foot plays an important role in the development of DFUs. Quantification of these could provide an improved means of assessment of the risk of developing DFUs. However, commercially-available sensing technology can only measure plantar pressures, neglecting shear stresses and thus limiting their clinical utility. Research into new sensor systems which can measure both plantar pressure and shear stresses are thus critical. Our aim in this paper is to provide the reader with an overview of recent advances in plantar pressure and stress sensing and offer insights into future needs in this critical area of healthcare. Firstly, we use current clinical understanding as the basis to define requirements for wearable sensor systems capable of assessing DFU. Secondly, we review the fundamental sensing technologies employed in this field and investigate the capabilities of the resultant wearable systems, including both commercial and research-grade equipment. Finally, we discuss research trends, ongoing challenges and future opportunities for improved sensing technologies to monitor plantar loading in the diabetic foot.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Dispositivos Electrónicos Vestibles , Pie Diabético/diagnóstico , Pie , Humanos , Monitoreo Fisiológico , Estrés Mecánico
12.
Proc Inst Mech Eng H ; 233(1): 114-126, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29417869

RESUMEN

This article presents a method to fabricate, measure and control a physical simulation of the human defecatory system to investigate individual and combined effects of anorectal angle and sphincter pressure on continence. To illustrate the capabilities and clinical relevance of the work, the influence of a passive-assistive artificial anal sphincter (FENIXTM) is evaluated. A model rectum and associated soft tissues, based on geometry from an anonymised computed tomography dataset, was fabricated from silicone and showed behavioural realism to the biological system and ex vivo tissue. Simulated stool matter with similar rheological properties to human faeces was developed. Instrumentation and control hardware were used to regulate injection of simulated stool into the system, automate balloon catheter movement through the anal canal, define the anorectal angle and monitor stool flow rate, intra-rectal pressure, anal canal pressure and puborectalis force. Studies were conducted to examine the response of anorectal angles at 80°, 90° and 100° with simulated stool. Tests were then repeated with the inclusion of a FENIX device. Stool leakage was reduced as the anorectal angle became more acute. Conversely, intra-rectal pressure increased. Overall inclusion of the FENIX reduced faecal leakage, while combined effects of the FENIX and an acute anorectal angle showed the greatest resistance to faecal leakage. These data demonstrate that the anorectal angle and sphincter pressure are fundamental in maintaining continence. Furthermore, it demonstrates that use of the FENIX can increase resistance to faecal leakage and reduce anorectal angles required to maintain continence. Physical simulation of the defecatory system is an insightful tool to better understand, in a quantitative manner, the effects of the anorectal angle and sphincter pressure on continence. This work is valuable in helping improve our understanding of the physical behaviour of the continence mechanism and facilitating improved technologies to treat severe faecal incontinence.


Asunto(s)
Incontinencia Fecal/fisiopatología , Fenómenos Mecánicos , Modelos Biológicos , Adulto , Fenómenos Biomecánicos , Incontinencia Fecal/patología , Heces , Humanos
13.
Proc Inst Mech Eng H ; 233(1): 138-153, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29947579

RESUMEN

Advances in healthcare technology for continence have historically been limited compared to other areas of medicine, reflecting the complexities of the condition and social stigma which act as a barrier to participation. This whitepaper has been developed to inspire and direct the engineering science community towards research opportunities that exist for continence technologies that address unmet needs in diagnosis, treatment and long-term management. Our aim is to pinpoint key challenges and highlight related research opportunities for novel technological advances. To do so, we draw on experience and expertise from academics, clinicians, patients and patient groups linked to continence healthcare. This is presented in four areas of consideration: the clinical pathway, patient perspective, research challenges and effective innovation. In each we introduce seminal research, background information and demonstrative case-studies, before discussing their relevance to engineering science researchers who are interested in approaching this overlooked but vital area of healthcare.


Asunto(s)
Ingeniería/métodos , Incontinencia Fecal/terapia , Incontinencia Urinaria/terapia , Incontinencia Fecal/psicología , Humanos , Invenciones , Incontinencia Urinaria/psicología
14.
Sensors (Basel) ; 17(11)2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29099787

RESUMEN

This paper investigates the design optimisation of a magnetic field based soft tactile sensor, comprised of a magnet and Hall effect module separated by an elastomer. The aim was to minimise sensitivity of the output force with respect to the input magnetic field; this was achieved by varying the geometry and material properties. Finite element simulations determined the magnetic field and structural behaviour under load. Genetic programming produced phenomenological expressions describing these responses. Optimisation studies constrained by a measurable force and stable loading conditions were conducted; these produced Pareto sets of designs from which the optimal sensor characteristics were selected. The optimisation demonstrated a compromise between sensitivity and the measurable force, a fabricated version of the optimised sensor validated the improvements made using this methodology. The approach presented can be applied in general for optimising soft tactile sensor designs over a range of applications and sensing modes.

15.
Sci Transl Med ; 9(373)2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28100834

RESUMEN

There is much interest in form-fitting, low-modulus, implantable devices or soft robots that can mimic or assist in complex biological functions such as the contraction of heart muscle. We present a soft robotic sleeve that is implanted around the heart and actively compresses and twists to act as a cardiac ventricular assist device. The sleeve does not contact blood, obviating the need for anticoagulation therapy or blood thinners, and reduces complications with current ventricular assist devices, such as clotting and infection. Our approach used a biologically inspired design to orient individual contracting elements or actuators in a layered helical and circumferential fashion, mimicking the orientation of the outer two muscle layers of the mammalian heart. The resulting implantable soft robot mimicked the form and function of the native heart, with a stiffness value of the same order of magnitude as that of the heart tissue. We demonstrated feasibility of this soft sleeve device for supporting heart function in a porcine model of acute heart failure. The soft robotic sleeve can be customized to patient-specific needs and may have the potential to act as a bridge to transplant for patients with heart failure.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Corazón Auxiliar , Corazón/fisiología , Robótica , Animales , Femenino , Pruebas de Función Cardíaca , Humanos , Inflamación , Movimiento (Física) , Ratas , Ratas Sprague-Dawley , Siliconas/química , Porcinos , Microtomografía por Rayos X
16.
Sensors (Basel) ; 16(9)2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27563908

RESUMEN

Tactile sensors are essential if robots are to safely interact with the external world and to dexterously manipulate objects. Current tactile sensors have limitations restricting their use, notably being too fragile or having limited performance. Magnetic field-based soft tactile sensors offer a potential improvement, being durable, low cost, accurate and high bandwidth, but they are relatively undeveloped because of the complexities involved in design and calibration. This paper presents a general design methodology for magnetic field-based three-axis soft tactile sensors, enabling researchers to easily develop specific tactile sensors for a variety of applications. All aspects (design, fabrication, calibration and evaluation) of the development of tri-axis soft tactile sensors are presented and discussed. A moving least square approach is used to decouple and convert the magnetic field signal to force output to eliminate non-linearity and cross-talk effects. A case study of a tactile sensor prototype, MagOne, was developed. This achieved a resolution of 1.42 mN in normal force measurement (0.71 mN in shear force), good output repeatability and has a maximum hysteresis error of 3.4%. These results outperform comparable sensors reported previously, highlighting the efficacy of our methodology for sensor design.

17.
J Biomech ; 49(1): 123-126, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26620442

RESUMEN

During early stages of postnatal development, pressure from the growing brain as well as cerebrospinal fluid, i.e. intracranial pressure (ICP), load the calvarial bones. It is likely that such loading contributes to the peripheral bone formation at the sutural edges of calvarial bones, especially shortly after birth when the brain is growing rapidly. The aim of this study was to quantify ICP during mouse development. A custom pressure monitoring system was developed and calibrated. It was then used to measure ICP in a total of seventy three wild type mice at postnatal (P) day 3, 10, 20, 31 and 70. Retrospectively, the sample in each age group with the closest ICP to the average value was scanned using micro-computed tomography to estimate cranial growth. ICP increased from 1.33±0.87mmHg at P3 to 1.92±0.78mmHg at P10 and 3.60±1.08mmHg at P20. In older animals, ICP plateaued at about 4mmHg. There were statistically significant differences between the ICP at the P3 vs. P20, and P10 vs. P20. In the samples that were scanned, intracranial volume and skull length followed a similar pattern of increase up to P20 and then plateaued at older ages. These data are consistent with the possibility of ICP being a contributing factor to bone formation at the sutures during early stages of development. The data can be further used for development and validation of computational models of skull growth.


Asunto(s)
Encéfalo/embriología , Presión Intracraneal , Animales , Lesiones Encefálicas , Simulación por Computador , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Monitoreo Fisiológico , Presión , Estudios Retrospectivos , Cráneo , Factores de Tiempo , Microtomografía por Rayos X
18.
Proc Inst Mech Eng H ; 229(4): 271-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25825419

RESUMEN

This article investigates the friction characteristics of the instrument-trocar interface in laparoscopic surgery for varying linear instrument velocities, trocar seal design and material, and trocar tilt. Furthermore, the effect of applying lubrication at the instrument-trocar seal interface on friction was studied. A friction testing apparatus was designed and built to characterise the resistance force at the instrument-trocar interface as a function of the instrument's linear movement in the 12-mm trocar (at constant velocity) for different design, seal material, and angle of tilt. The resistance force depended on the trocar seal design and material properties, specifically surface roughness, elasticity, hardness, the direction of movement, and the instrument linear velocity, and varied between 0.25 and 8 N. Lubricating the shaft with silicone oil reduced the peak resistance force by 75% for all trocars and eliminated the stick-slip phenomenon evident in non-lubricated cases. The magnitude of fluctuation in resistance force depends on the trocar design and is attributed to stick-slip of the sealing mechanism and is generally higher during retraction in comparison to insertion. Trocars that have an inlet seal made of rubber/polyurethane showed higher resistance forces during retraction. Use of a lubricant significantly reduced frictional effects. Comparisons of the investigated trocars indicate that a low friction port, providing the surgeon with improved haptic feedback, can be designed by improving the tribological properties of the trocar seal interface.


Asunto(s)
Fricción , Laparoscopía/instrumentación , Instrumentos Quirúrgicos , Diseño de Equipo , Humanos , Lubricantes , Ensayo de Materiales , Propiedades de Superficie
19.
Exp Brain Res ; 192(4): 635-49, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18936929

RESUMEN

We tested the hypothesis that the upper and lower arm act as a coordinative structure coupled through a higher order control system. Five healthy participants moved their hand between two targets in ten conditions via internal/external rotation of the shoulder. In eight conditions, the task required concurrent rotation of the lower arm (180 degrees pronation/supination). Movements were stereotypical within a condition but plotting the upper and lower arm angle against each other produced an asymmetrical pattern. With internal rotation, the upper arm reached peak angular velocity slower than the lower arm but this was reversed with external rotation. In two conditions, participants were asked to move faster and slower than their normal speed. The peak speed, time to peak speed and duration were predictable for the different tasks. Internal and external asymmetries decreased with faster movements. In addition a decrease in upper arm amplitude (from 90 degrees to 30 degrees) removed the asymmetry. The asymmetry was unaffected by initial posture but was exaggerated when external rotation was paired with pronation rather than supination, and internal rotation combined with supination (versus pronation). However, the presence of the same fundamental pattern suggests that the asymmetry is not due to biomechanical factors but might arise because of the difficulties involved in visually monitoring the hand when it is close to the body. The results support the idea that functional coupling can occur between upper and lower arm rotations and thus provides further evidence for a higher order control system which is responsible for coordination of arm segment movement.


Asunto(s)
Brazo/fisiología , Movimiento , Desempeño Psicomotor , Rotación , Adulto , Análisis de Varianza , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Análisis y Desempeño de Tareas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...