Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Analyst ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712606

RESUMEN

Plant hormones are important in the control of physiological and developmental processes including seed germination, senescence, flowering, stomatal aperture, and ultimately the overall growth and yield of plants. Many currently available methods to quantify such growth regulators quickly and accurately require extensive sample purification using complex analytic techniques. Herein we used ultra-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) to create and validate the prediction of hormone concentrations made using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectral profiles of both freeze-dried ground leaf tissue and extracted xylem sap of Japanese knotweed (Reynoutria japonica) plants grown under different environmental conditions. In addition to these predictions made with partial least squares regression, further analysis of spectral data was performed using chemometric techniques, including principal component analysis, linear discriminant analysis, and support vector machines (SVM). Plants grown in different environments had sufficiently different biochemical profiles, including plant hormonal compounds, to allow successful differentiation by ATR-FTIR spectroscopy coupled with SVM. ATR-FTIR spectral biomarkers highlighted a range of biomolecules responsible for the differing spectral signatures between growth environments, such as triacylglycerol, proteins and amino acids, tannins, pectin, polysaccharides such as starch and cellulose, DNA and RNA. Using partial least squares regression, we show the potential for accurate prediction of plant hormone concentrations from ATR-FTIR spectral profiles, calibrated with hormonal data quantified by UHPLC-HRMS. The application of ATR-FTIR spectroscopy and chemometrics offers accurate prediction of hormone concentrations in plant samples, with advantages over existing approaches.

2.
Biofactors ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318672

RESUMEN

Obesity is a pressing problem worldwide for which standard therapeutic strategies have limited effectiveness. The use of natural products seems to be a promising approach to alleviate obesity and its associated complications. The tepals of Crocus sativus (Cr) plant, usually wasted in saffron production, are an unexplored source of bioactive compounds. Our aim was to elucidate the mechanisms of Cr tepals extract in obesity by investigating its effects on adipocyte differentiation, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) hypertrophy, and lipid metabolism in an animal model of diet-induced obesity. To this end, mouse 3T3-F442A preadipocytes were treated with Cr tepals extract and the expression of adipocyte differentiation genes was determined. Caloric intake, body mass, triglycerides, systemic insulin sensitivity, histology, insulin signaling, and lipid metabolism in VAT and SAT were analyzed in mice fed a 60% fat diet for 14 weeks and treated orally with Cr tepals extract during the last 5 weeks of the diet. We demonstrated for the first time that Cr tepals extract inhibits adipocyte differentiation in vitro. The animal model confirmed that oral treatment with Cr tepals extract results in weight loss, improved systemic insulin sensitivity, lower triglycerides, and improved lipid peroxidation. The suppressive effect of Cr tepals extract on adipocyte hypertrophy and inflammation was observed only in SAT, which, together with preserved SAT insulin signaling, most likely contributed to improved systemic insulin sensitivity. Our results suggest the functionality of SAT as a possible target for the treatment of obesity and its complications.

3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446349

RESUMEN

The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed the dynamics and role of endogenous auxin in microspore development during these two different scenarios, in Brassica napus. We analyzed auxin concentration, cellular accumulation, the expression of the TAA1 auxin biosynthesis gene, and the PIN1-like efflux carrier gene, as well as the effects of inhibiting auxin biosynthesis by kynurenine on microspore embryogenesis. During the gametophytic pathway, auxin levels and TAA1 and PIN1-like expression were high at early stages, in tetrads and tapetum, while they progressively decreased during gametogenesis in both pollen and tapetum cells. In contrast, in microspore embryogenesis, TAA1 and PIN1-like genes were upregulated, and auxin concentration increased from the first embryogenic divisions. Kynurenine treatment decreased both embryogenesis induction and embryo production, indicating that auxin biosynthesis is required for microspore embryogenesis initiation and progression. The findings indicate that auxin exhibits two opposite profiles during these two microspore developmental pathways, which determine the different cell fates of the microspore.


Asunto(s)
Ácidos Indolacéticos , Quinurenina , Ácidos Indolacéticos/metabolismo , Quinurenina/metabolismo , Proteínas de Plantas/genética , Polen/genética , Polen/metabolismo , Desarrollo Embrionario
4.
Front Plant Sci ; 14: 1133299, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465386

RESUMEN

Many highly valued chemicals in the pharmaceutical, biotechnological, cosmetic, and biomedical industries belong to the terpenoid family. Biosynthesis of these chemicals relies on polymerization of Isopentenyl di-phosphate (IPP) and/or dimethylallyl diphosphate (DMAPP) monomers, which plants synthesize using two alternative pathways: a cytosolic mevalonic acid (MVA) pathway and a plastidic methyleritritol-4-phosphate (MEP) pathway. As such, developing plants for use as a platform to use IPP/DMAPP and produce high value terpenoids is an important biotechnological goal. Still, IPP/DMAPP are the precursors to many plant developmental hormones. This creates severe challenges in redirecting IPP/DMAPP towards production of non-cognate plant metabolites. A potential solution to this problem is increasing the IPP/DMAPP production flux in planta. Here, we aimed at discovering, understanding, and predicting the effects of increasing IPP/DMAPP production in plants through modelling. We used synthetic biology to create rice lines containing an additional ectopic MVA biosynthetic pathway for producing IPP/DMAPP. The rice lines express three alternative versions of the additional MVA pathway in the plastid, in addition to the normal endogenous pathways. We collected data for changes in macroscopic and molecular phenotypes, gene expression, isoprenoid content, and hormone abundance in those lines. To integrate the molecular and macroscopic data and develop a more in depth understanding of the effects of engineering the exogenous pathway in the mutant rice lines, we developed and analyzed data-centric, line-specific, multilevel mathematical models. These models connect the effects of variations in hormones and gene expression to changes in macroscopic plant phenotype and metabolite concentrations within the MVA and MEP pathways of WT and mutant rice lines. Our models allow us to predict how an exogenous IPP/DMAPP biosynthetic pathway affects the flux of terpenoid precursors. We also quantify the long-term effect of plant hormones on the dynamic behavior of IPP/DMAPP biosynthetic pathways in seeds, and predict plant characteristics, such as plant height, leaf size, and chlorophyll content from molecular data. In addition, our models are a tool that can be used in the future to help in prioritizing re-engineering strategies for the exogenous pathway in order to achieve specific metabolic goals.

5.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298165

RESUMEN

Post-prandial hyperglycemia typical of diabetes mellitus could be alleviated using plant-derived compounds such as polyphenols, which could influence the activities of enzymes involved in carbohydrate digestion and of intestinal glucose transporters. Here, we report on the potential anti-hyperglycemic effect of Crocus sativus tepals compared to stigmas, within the framework of valorizing these by-products of the saffron industry, since the anti-diabetic properties of saffron are well-known, but not those of its tepals. In vitro assays showed that tepal extracts (TE) had a greater inhibitory action than stigma extracts (SE) on α-amylase activity (IC50: TE = 0.60 ± 0.09 mg/mL; SE = 1.10 ± 0.08 mg/mL; acarbose = 0.051 ± 0.07) and on glucose absorption in Caco-2 differentiated cells (TE = 1.20 ± 0.02 mg/mL; SE = 2.30 ± 0.02 mg/mL; phlorizin = 0.23 ± 0.01). Virtual screening performed with principal compounds from stigma and tepals of C. sativus and human pancreatic α-amylase, glucose transporter 2 (GLUT2) and sodium glucose co-transporter-1 (SGLT1) were validated via molecular docking, e.g., for human pancreatic α-amylase, epicatechin 3-o-gallate and catechin-3-o-gallate were the best scored ligands from tepals (-9.5 kcal/mol and -9.4 kcal/mol, respectively), while sesamin and episesamin were the best scored ones from stigmas (-10.1 kcal/mol). Overall, the results point to the potential of C. sativus tepal extracts in the prevention/management of diabetes, likely due to the rich pool of phytocompounds characterized using high-resolution mass spectrometry, some of which are capable of binding and interacting with proteins involved in starch digestion and intestinal glucose transport.


Asunto(s)
Crocus , Diabetes Mellitus , Humanos , Polifenoles/farmacología , Polifenoles/metabolismo , Crocus/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/metabolismo , alfa-Amilasas Pancreáticas/metabolismo , Células CACO-2 , Simulación del Acoplamiento Molecular , Glucosa/metabolismo , Extractos Vegetales/química
6.
Antioxidants (Basel) ; 12(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372036

RESUMEN

Tea is grown around the world under extremely diverse geographic and climatic conditions, namely, in China, India, the Far East and Africa. However, recently, growing tea also appears to be feasible in many regions of Europe, from where high-quality, chemical-free, organic, single-estate teas have been obtained. Hence, the aim of this study was to characterize the health-promoting properties in terms of the antioxidant capacity of traditional hot brews as well as cold brews of black, green and white teas produced across the European territory using a panel of antioxidant assays. Total polyphenol/flavonoid contents and metal chelating activity were also determined. For differentiating the characteristics of the different tea brews, ultraviolet-visible (UV-Vis) spectroscopy and ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry were employed. Overall, our findings demonstrate for the first time that teas grown in Europe are good quality teas that are endowed with levels of health-promoting polyphenols and flavonoids and that have an antioxidant capacity similar to those grown in other parts of the world. This research is a vital contribution to the characterization of European teas, providing essential and important information for both European tea growers and consumers, and could be of guidance and support for the selection of teas grown in the old continent, along with having the best brewing conditions for maximizing the health benefits of tea.

7.
Front Plant Sci ; 14: 1170021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180400

RESUMEN

Phytohormones play an important role in regulating the plant behavior to drought. In previous studies, NIBER® pepper rootstock showed tolerance to drought in terms of production and fruit quality compared to ungrafted plants. In this study, our hypothesis was that short-term exposure to water stress in young, grafted pepper plants would shed light on tolerance to drought in terms of modulation of the hormonal balance. To validate this hypothesis, fresh weight, water use efficiency (WUE) and the main hormone classes were analyzed in self-grafted pepper plants (variety onto variety, V/V) and variety grafted onto NIBER® (V/N) at 4, 24, and 48h after severe water stress was induced by PEG addition. After 48h, WUE in V/N was higher than in V/V, due to major stomata closure to maintain water retention in the leaves. This can be explained by the higher abscisic acid (ABA) levels observed in the leaves of V/N plants. Despite the interaction between ABA and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in relation to stomata closure is controversial, we observed an important increase of ACC at the end of the experiment in V/N plants coinciding with an important rise of the WUE and ABA. The maximum concentration of jasmonic acid and salicylic acid after 48h was found in the leaves of V/N, associated with their role in abiotic stress signaling and tolerance. Respect to auxins and cytokinins, the highest concentrations were linked to water stress and NIBER®, but this effect did not occur for gibberellins. These results show that hormone balance was affected by water stress and rootstock genotype, where NIBER® rootstock displayed a better ability to overcome short-term water stress.

8.
Plant Cell Environ ; 46(7): 2128-2141, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066607

RESUMEN

Chilling can decrease stomatal sensitivity to abscisic acid (ABA) in some legumes, although hormonal mechanisms involved are unclear. After evaluating leaf gas exchange of 16 European soybean genotypes at 14°C, 6 genotypes representing the range of response were selected. Further experiments combined low (L, 14°C) and high (H, 24°C) temperature exposure from sowing until the unifoliate leaf was visible and L or H temperature until full leaf expansion, to impose four temperature treatments: LL, LH, HL, and HH. Prolonged chilling (LL) substantially decreased leaf water content but increased leaf ethylene evolution and foliar concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, indole-3-acetic acid, ABA and jasmonic acid. Across genotypes, photosynthesis linearly increased with stomatal conductance (Gs), with photosynthesis of HH plants threefold higher than LL plants at the same Gs. In all treatments except LL, Gs declined with foliar ABA accumulation. Foliar ABA sprays substantially decreased Gs of HH plants, but did not significantly affect LL plants. Thus low temperature compromised stomatal sensitivity to endogenous and exogenous ABA. Applying the ethylene antagonist 1 methyl-cyclopropene partially reverted excessive stomatal opening of LL plants. Thus, chilling-induced ethylene accumulation may mediate stomatal insensitivity to ABA, offering chemical opportunities for improving seedling survival in cold environments.


Asunto(s)
Ácido Abscísico , Glycine max , Ácido Abscísico/farmacología , Temperatura , Etilenos/farmacología , Plantas
9.
Plants (Basel) ; 12(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36840066

RESUMEN

Grapevine rootstocks may supply water to the scion according to the transpiration demand, thus modulating plant responses to water deficit, but the scion variety can alter these responses, as well. The rootstock genotypes' effect on the scion physiological response, aquaporin expression, and hormone concentrations in the xylem and the leaf was assessed under well watered (WW) and water stress (WS) conditions. Under WW, vines grafted onto 1103P and R110 rootstocks (the more vigorous and drought-tolerant) showed higher photosynthesis (AN), stomatal conductance (gs), and hydraulic conductance (Khplant) compared with the less vigorous and drought-sensitive rootstock (161-49C), while under WS, there were hardly any differences between vines depending on the rootstock grafted. Besides, stomatal traits were affected by drought, which was related to gs, but not by the rootstock. Under WS conditions, all VvPIP and VvTIP aquaporins were up-regulated in the vines grafted onto 1103P and down-regulated in the ones grafted onto 161-49C. The 1103P capability to tolerate drought was enhanced by the up-regulation of all VvPIP and VvTIP aquaporins, lower ABA synthesis, and higher ACC/ABA ratios in leaves during WS compared with 161-49C. It was concluded that, under WW conditions, transpiration and stomatal control were rootstock-dependent. However, under WS conditions, alterations in the molecular components of water transport and hormone concentration of the scion resulted in similar gas exchange values in the studied scions grafted onto different rootstocks.

10.
Plant Cell Physiol ; 64(2): 152-164, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36398993

RESUMEN

Removal of the root system induces the formation of new roots from the remaining shoot. This process is primarily controlled by the phytohormone auxin, which interacts with other signals in a yet unresolved manner. Here, we study the classical tomato mutation rosette (ro), which lacks shoot-borne roots. ro mutants were severely inhibited in formation of wound-induced roots (WiRs) and had reduced auxin transport rates. We mapped ro to the tomato ortholog of the Arabidopsis thaliana BIG and the mammalians UBR4/p600. RO/BIG is a large protein of unknown biochemical function. In A. thaliana, BIG was implicated in regulating auxin transport and calcium homeostasis. We show that exogenous calcium inhibits WiR formation in tomato and A. thaliana ro/big mutants. Exogenous calcium antagonized the root-promoting effects of the auxin indole-3-acetic-acid but not of 2,4-dichlorophenoxyacetic acid, an auxin analog that is not recognized by the polar transport machinery, and accumulation of the auxin transporter PIN-FORMED1 (PIN1) was sensitive to calcium levels in the ro/big mutants. Consistent with a role for calcium in mediating auxin transport, both ro/big mutants and calcium-treated wild-type plants were hypersensitive to treatment with polar auxin transport inhibitors. Subcellular localization of BIG suggests that, like its mammalian ortholog, it is associated with the endoplasmic reticulum. Analysis of subcellular morphology revealed that ro/big mutants exhibited disruption in cytoplasmic streaming. We suggest that RO/BIG maintains auxin flow by stabilizing PIN membrane localization, possibly by attenuating the inhibitory effect of Ca2+ on cytoplasmic streaming.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Mutación , Raíces de Plantas/metabolismo , Mamíferos/metabolismo
11.
Plant Sci ; 326: 111525, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36328179

RESUMEN

Prolonged cold stress has a strong effect on plant growth and development, especially in subtropical crops such as maize. Soil temperature limits primary root elongation, mainly during early seedling establishment. However, little is known about how moderate temperature fluctuations affect root growth at the molecular and physiological levels. We have studied root tips of young maize seedlings grown hydroponically at 30 ºC and after a short period (up to 24 h) of moderate cooling (20 ºC). We found that both cell division and cell elongation in the root apical meristem are affected by temperature. Time-course analyses of hormonal and transcriptomic profiles were achieved after temperature reduction from 30 ºC to 20 ºC. Our results highlighted a complex regulation of endogenous pathways leading to adaptive root responses to moderate cooling conditions.


Asunto(s)
Plantones , Zea mays , Zea mays/metabolismo , Raíces de Plantas , Meristema/genética , Transcriptoma
12.
Plants (Basel) ; 11(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36297821

RESUMEN

To improve water and nutrient use efficiencies some strategies have been proposed, such as the use of mulching techniques or arbuscular mycorrhizal fungi (AMF) inoculation. To gain insights into the interaction between the use of hydromulch and AMF inoculation on plant growth and productivity, escarole plants (Cichorium endivia, L.) were inoculated with the AMF Rhizophagus irregularis and grown with non-inoculated plants under different soil cover treatments: ecological hydromulching based on the substrate of mushroom cultivation (MS), low-density black polyethylene (PE), and non-covered soil (BS). AMF inoculation or the use of mulching alone, but especially their interaction, increased the plant growth. The growth improvement observed in AMF-inoculated escarole plants grown under hydromulching conditions was mainly associated with the upgrading of nitrogen and phosphorous use efficiency through the regulation of the hormonal balance. Both hydromulching and AMF inoculation were found to increase the active gibberellins (GAs) and cytokinins (CKs), resulting in a positive correlation between these hormones and the growth-related parameters. In contrast, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and abscisic acid (ABA) decreased in AMF-inoculated plants and especially in those grown with the MS treatment. This study demonstrates that there exists a positive interaction between AMF and hydromulching which enhances the growth of escarole plants by improving nutrient use efficiency and hormonal balance.

13.
Plants (Basel) ; 11(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406893

RESUMEN

Several Prunus species are among the most important cultivated stone fruits in the Mediterranean region, and there is an urgent need to obtain rootstocks with specific adaptations to challenging environmental conditions. The development of adventitious roots (ARs) is an evolutionary mechanism of high relevance for stress tolerance, which has led to the development of environmentally resilient plants. As a first step towards understanding the genetic determinants involved in AR formation in Prunus sp., we evaluated the rooting of hardwood cuttings from five Prunus rootstocks (Adafuel, Adarcias, Cadaman, Garnem, and GF 677) grown in hydroponics. We found that auxin-induced callus and rooting responses were strongly genotype-dependent. To investigate the molecular mechanisms involved in these differential responses, we performed a time-series study of AR formation in two rootstocks with contrasting rooting performance, Garnem and GF 677, by culturing in vitro microcuttings with and without auxin treatment (0.9 mg/L of indole-3-butyric acid [IBA]). Despite showing a similar histological structure, Garnem and GF677 rootstocks displayed dynamic changes in endogenous hormone homeostasis involving metabolites such as indole-3-acetic acid (IAA) conjugated to aspartic acid (IAA-Asp), and these changes could explain the differences observed during rooting.

14.
Plant Sci ; 319: 111259, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487667

RESUMEN

An adequate availability of Zinc (Zn) is crucial for plant growth and development given the essentiality of this element. Thus, both Zn deficiency and Zn toxicity can limit crop yields. In plants, the responses to Zn imbalances involve important physiological aspects such as reactive oxygen species (ROS) accumulation, phytohormone balance, tricarboxylic acid cycle (TCA) metabolism, and organic acids (OAs) accumulation. However, a way to improve tolerance to stresses such as those produced by nutritional imbalances is the application of beneficial elements such as silicon (Si). In this study, we grew barley plants in hydroponics under Zn deficiency and toxicity conditions, applying Si in the form of CaSiO3 in order to assess its effectiveness against Zn imbalances. Parameters related to plant growth, oxidative stress, TCA enzyme activities, phytohormones and OAs accumulation were analyzed. Both Zn deficiency and toxicity reduced leaf biomass, increased ROS accumulation, and affected phytohormone and OAs concentrations and TCA enzyme activities. CaSiO3 treatment was effective in counteracting these effects enhancing Zn accumulation under Zn deficient conditions and limiting its accumulation under toxic conditions. In addition, this treatment decreased ROS levels, and improved ascorbate/glutathione and phytohormonal responses, citrate synthase activity, and malate/oxalate ratio. Therefore, this study enhanced the notion of the efficacy of CaSiO3 in improving tolerance to Zn imbalances.


Asunto(s)
Hordeum , Compuestos de Calcio , Hordeum/metabolismo , Reguladores del Crecimiento de las Plantas , Plantas/metabolismo , Especies Reactivas de Oxígeno , Silicatos , Silicio/metabolismo , Zinc/metabolismo
15.
Transgenic Res ; 31(2): 249-268, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35201538

RESUMEN

Isoprenoids are natural products derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, these precursors are synthesized via the cytosolic mevalonate (MVA) and plastidial methylerythritol phosphate (MEP) pathways. The regulation of these pathways must therefore be understood in detail to develop effective strategies for isoprenoid metabolic engineering. We hypothesized that the strict regulation of the native MVA pathway could be circumvented by expressing an ectopic plastidial MVA pathway that increases the accumulation of IPP and DMAPP in plastids. We therefore introduced genes encoding the plastid-targeted enzymes HMGS, tHMGR, MK, PMK and MVD and the nuclear-targeted transcription factor WR1 into rice and evaluated the impact of their endosperm-specific expression on (1) endogenous metabolism at the transcriptomic and metabolomic levels, (2) the synthesis of phytohormones, carbohydrates and fatty acids, and (3) the macroscopic phenotype including seed morphology. We found that the ectopic plastidial MVA pathway enhanced the expression of endogenous cytosolic MVA pathway genes while suppressing the native plastidial MEP pathway, increasing the production of certain sterols and tocopherols. Plants carrying the ectopic MVA pathway only survived if WR1 was also expressed to replenish the plastid acetyl-CoA pool. The transgenic plants produced higher levels of fatty acids, abscisic acid, gibberellins and lutein, reflecting crosstalk between phytohormones and secondary metabolism.


Asunto(s)
Oryza , Ácidos Grasos , Ácido Mevalónico/metabolismo , Oryza/genética , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Terpenos/metabolismo
16.
Mol Hortic ; 2(1): 12, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789497

RESUMEN

Tomato production is influenced by shoot branching, which is controlled by different hormones. Here we produced tomato plants overexpressing the cytokinin-deactivating gene CYTOKININ OXYDASE 2 (CKX2). CKX2-overexpressing (CKX2-OE) plants showed an excessive growth of axillary shoots, the opposite phenotype expected for plants with reduced cytokinin content, as evidenced by LC-MS analysis and ARR5-GUS staining. The TCP transcription factor SlBRC1b was downregulated in the axillary buds of CKX2-OE and its excessive branching was dependent on a functional version of the GRAS-family gene LATERAL SUPPRESSOR (LS). Grafting experiments indicated that increased branching in CKX2-OE plants is unlikely to be mediated by root-derived signals. Crossing CKX2-OE plants with transgenic antisense plants for the strigolactone biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE (CCD7-AS) produced an additive phenotype, indicating independent effects of cytokinin and strigolactones on increased branching. On the other hand, CKX2-OE plants showed reduced polar auxin transport and their bud outgrowth was reduced when combined with auxin mutants. Accordingly, CKX2-OE basal buds did not respond to auxin applied in the decapitated apex. Our results suggest that tomato shoot branching depends on a fine-tuning of different hormonal balances and that perturbations in the auxin status could compensate for the reduced cytokinin levels in CKX2-OE plants.

17.
Plants (Basel) ; 10(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834627

RESUMEN

The current work aimed to investigate the effect of seed priming with different agents (CaCl2, KCl, and KNO3) on germination and seedling establishment in seeds of the barley species of both Hordeum vulgare (L. Manel) and Hordeum maritimum germinated with three salt concentrations (0, 100, and 200 mM NaCl). The results showed that under unprimed conditions, salt stress significantly reduced the final germination rate, the mean daily germination, and the seedling length and dry weight. It led to a decrease in the essential nutrient content (iron, calcium, magnesium, and potassium) against an increase in sodium level in both of the barley species. Moreover, this environmental constraint provoked a membrane injury caused by a considerable increase in electrolyte leakage and the malondialdehyde content (MDA). Data analysis proved that seed priming with CaCl2, KCl, and KNO3 was an effective method for alleviating barley seed germination caused by salt stress to varying degrees. Different priming treatments clearly stimulated germination parameters and the essential nutrient concentration, in addition to increasing the seedling growth rate. The application of seed priming reduced the accumulation of sodium ions and mitigated the oxidative stress of seeds caused by salt. This mitigation was traduced by the maintenance of low levels of MDA and electrolyte leakage. We conclude that the priming agents can be classed into three ranges based on their efficacy on the different parameters analyzed; CaCl2 was placed in the first range, followed closely by KNO3, while the least effective was KCl, which placed in the third range.

18.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34769274

RESUMEN

Plants have a remarkable regenerative capacity, which allows them to survive tissue damage after biotic and abiotic stresses. In this study, we use Solanum lycopersicum 'Micro-Tom' explants as a model to investigate wound-induced de novo organ formation, as these explants can regenerate the missing structures without the exogenous application of plant hormones. Here, we performed simultaneous targeted profiling of 22 phytohormone-related metabolites during de novo organ formation and found that endogenous hormone levels dynamically changed after root and shoot excision, according to region-specific patterns. Our results indicate that a defined temporal window of high auxin-to-cytokinin accumulation in the basal region of the explants was required for adventitious root formation and that was dependent on a concerted regulation of polar auxin transport through the hypocotyl, of local induction of auxin biosynthesis, and of local inhibition of auxin degradation. In the apical region, though, a minimum of auxin-to-cytokinin ratio is established shortly after wounding both by decreasing active auxin levels and by draining auxin via its basipetal transport and internalization. Cross-validation with transcriptomic data highlighted the main hormonal gradients involved in wound-induced de novo organ formation in tomato hypocotyl explants.


Asunto(s)
Citocininas/metabolismo , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo
19.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34576275

RESUMEN

Plants have remarkable regenerative capacity, which allows them to survive tissue damage after exposure to biotic and abiotic stresses. Some of the key transcription factors and hormone crosstalk mechanisms involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. However, little is known about the role of metabolism in wound-induced organ formation. Here, we performed detailed transcriptome analysis and used a targeted metabolomics approach to study de novo organ formation in tomato hypocotyl explants and found tissue-specific metabolic differences and divergent developmental pathways. Our results indicate that successful regeneration in the apical region of the hypocotyl depends on a specific metabolic switch involving the upregulation of photorespiratory pathway components and the differential regulation of photosynthesis-related gene expression and gluconeogenesis pathway activation. These findings provide a useful resource for further investigation of the molecular mechanisms involved in wound-induced organ formation in crop species such as tomato.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Metabolómica , Solanum lycopersicum/genética , Perfilación de la Expresión Génica , Gluconeogénesis , Glucólisis , Secuenciación de Nucleótidos de Alto Rendimiento , Fotosíntesis , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , RNA-Seq , Factores de Transcripción/metabolismo , Cicatrización de Heridas
20.
Plant Cell Environ ; 44(9): 2966-2986, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34053093

RESUMEN

To determine whether root-supplied ABA alleviates saline stress, tomato (Solanum lycopersicum L. cv. Sugar Drop) was grafted onto two independent lines (NCED OE) overexpressing the SlNCED1 gene (9-cis-epoxycarotenoid dioxygenase) and wild type rootstocks. After 200 days of saline irrigation (EC = 3.5 dS m-1 ), plants with NCED OE rootstocks had 30% higher fruit yield, but decreased root biomass and lateral root development. Although NCED OE rootstocks upregulated ABA-signalling (AREB, ATHB12), ethylene-related (ACCs, ERFs), aquaporin (PIPs) and stress-related (TAS14, KIN, LEA) genes, downregulation of PYL ABA receptors and signalling components (WRKYs), ethylene synthesis (ACOs) and auxin-responsive factors occurred. Elevated SlNCED1 expression enhanced ABA levels in reproductive tissue while ABA catabolites accumulated in leaf and xylem sap suggesting homeostatic mechanisms. NCED OE also reduced xylem cytokinin transport to the shoot and stimulated foliar 2-isopentenyl adenine (iP) accumulation and phloem transport. Moreover, increased xylem GA3 levels in growing fruit trusses were associated with enhanced reproductive growth. Improved photosynthesis without changes in stomatal conductance was consistent with reduced stress sensitivity and hormone-mediated alteration of leaf growth and mesophyll structure. Combined with increases in leaf nutrients and flavonoids, systemic changes in hormone balance could explain enhanced vigour, reproductive growth and yield under saline stress.


Asunto(s)
Ácido Abscísico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Microscopía Electrónica de Rastreo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/ultraestructura , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Salino , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...