Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 59(47): 4507-4515, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33182997

RESUMEN

Terpenes make up the largest class of natural products, with extensive chemical and structural diversity. Diterpenes, mostly isolated from plants and rarely prokaryotes, exhibit a variety of important biological activities and valuable applications, including providing antitumor and antibiotic pharmaceuticals. These natural products are constructed by terpene synthases, a class of enzymes that catalyze one of the most complex chemical reactions in biology: converting simple acyclic oligo-isoprenyl diphosphate substrates to complex polycyclic products via carbocation intermediates. Here we obtained the second ever crystal structure of a class II diterpene synthase from bacteria, tuberculosinol pyrophosphate synthase (i.e., Halimadienyl diphosphate synthase, MtHPS, or Rv3377c) from Mycobacterium tuberculosis (Mtb). This enzyme transforms (E,E,E)-geranylgeranyl diphosphate into tuberculosinol pyrophosphate (Halimadienyl diphosphate). Rv3377c is part of the Mtb diterpene pathway along with Rv3378c, which converts tuberculosinol pyrophosphate to 1-tuberculosinyl adenosine (1-TbAd). This pathway was shown to exist only in virulent Mycobacterium species, but not in closely related avirulent species, and was proposed to be involved in phagolysosome maturation arrest. To gain further insight into the reaction pathway and the mechanistically relevant enzyme substrate binding orientation, electronic structure calculation and docking studies of reaction intermediates were carried out. Results reveal a plausible binding mode of the substrate that can provide the information to guide future drug design and anti-infective therapies of this biosynthetic pathway.


Asunto(s)
Transferasas Alquil y Aril/química , Diterpenos/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Ciclización/genética , Diterpenos/química , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/genética
2.
J Am Chem Soc ; 141(4): 1555-1567, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30645119

RESUMEN

Soybean lipoxygenase (SLO) has served as a prototype for understanding the molecular origin of enzymatic rate accelerations. The double mutant (DM) L546A/L754A is considered a dramatic outlier, due to the unprecedented size and near temperature-independence of its primary kinetic isotope effect, low catalytic efficiency, and elevated enthalpy of activation. To uncover the physical basis of these features, we herein apply three structural probes: hydrogen-deuterium exchange mass spectrometry, room-temperature X-ray crystallography and EPR spectroscopy on four SLO variants (wild-type (WT) enzyme, DM, and the two parental single mutants, L546A and L754A). DM is found to incorporate features of each parent, with the perturbation at position 546 predominantly influencing thermally activated motions that connect the active site to a protein-solvent interface, while mutation at position 754 disrupts the ligand field and solvation near the cofactor iron. However, the expanded active site in DM leads to more active site water molecules and their associated hydrogen bond network, and the individual features from L546A and L754A alone cannot explain the aggregate kinetic properties for DM. Using recently published QM/MM-derived ground-state SLO-substrate complexes for WT and DM, together with the thorough structural analyses presented herein, we propose that the impairment of DM is the combined result of a repositioning of the reactive carbon of linoleic acid substrate with regard to both the iron cofactor and a catalytically linked dynamic region of protein.


Asunto(s)
Coenzimas/metabolismo , Glycine max/enzimología , Lipooxigenasa/química , Lipooxigenasa/metabolismo , Metales/metabolismo , Mutación , Dominio Catalítico , Cinética , Lipooxigenasa/genética , Modelos Moleculares , Oxidación-Reducción , Termodinámica
3.
Structure ; 26(7): 972-986.e6, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29861345

RESUMEN

The Mycobacterium tuberculosis ATP-binding cassette transporter Rv1747 is a putative exporter of cell wall biosynthesis intermediates. Rv1747 has a cytoplasmic regulatory module consisting of two pThr-interacting Forkhead-associated (FHA) domains connected by a conformationally disordered linker with two phospho-acceptor threonines (pThr). The structures of FHA-1 and FHA-2 were determined by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, respectively. Relative to the canonical 11-strand ß-sandwich FHA domain fold of FHA-1, FHA-2 is circularly permuted and lacking one ß-strand. Nevertheless, the two share a conserved pThr-binding cleft. FHA-2 is less stable and more dynamic than FHA-1, yet binds model pThr peptides with moderately higher affinity (∼50 µM versus 500 µM equilibrium dissociation constants). Based on NMR relaxation and chemical shift perturbation measurements, when joined within a polypeptide chain, either FHA domain can bind either linker pThr to form intra- and intermolecular complexes. We hypothesize that this enables tunable phosphorylation-dependent multimerization to regulate Rv1747 transporter activity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Mycobacterium tuberculosis/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Citoplasma/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/química , Resonancia Magnética Nuclear Biomolecular , Fosfotreonina/metabolismo , Unión Proteica , Estructura Secundaria de Proteína
4.
ACS Cent Sci ; 3(6): 570-579, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28691068

RESUMEN

Defining specific pathways for efficient heat transfer from protein-solvent interfaces to their active sites represents one of the compelling and timely challenges in our quest for a physical description of the origins of enzyme catalysis. Enzymatic hydrogen tunneling reactions constitute excellent systems in which to validate experimental approaches to this important question, given the inherent temperature independence of quantum mechanical wave function overlap. Herein, we present the application of hydrogen-deuterium exchange coupled to mass spectrometry toward the spatial resolution of protein motions that can be related to an enzyme's catalytic parameters. Employing the proton-coupled electron transfer reaction of soybean lipoxygenase as proof of principle, we first corroborate the impact of active site mutations on increased local flexibility and, second, uncover a solvent-exposed loop, 15-34 Å from the reactive ferric center whose temperature-dependent motions are demonstrated to mirror the enthalpic barrier for catalytic C-H bond cleavage. A network that connects this surface loop to the active site is structurally identified and supported by changes in kinetic parameters that result from site-specific mutations.

5.
Biochemistry ; 56(30): 4015-4027, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28692281

RESUMEN

Mycobacterium tuberculosis protein Rv0577 is a prominent antigen in tuberculosis patients, the component responsible for neutral red staining of virulent strains of M. tuberculosis, a putative component in a methylglyoxal detoxification pathway, and an agonist of toll-like receptor 2. It also has an amino acid sequence that is 36% identical to that of Streptomyces coelicolor AfsK-binding protein A (KbpA), a component in the complex secondary metabolite pathways in the Streptomyces genus. To gain insight into the biological function of Rv0577 and the family of KpbA kinase regulators, the crystal structure for Rv0577 was determined to a resolution of 1.75 Å, binding properties with neutral red and deoxyadenosine were surveyed, backbone dynamics were measured, and thermal stability was assayed by circular dichroism spectroscopy. The protein is composed of four approximate repeats with a ßαßßß topology arranged radially in consecutive pairs to form two continuous eight-strand ß-sheets capped on both ends with an α-helix. The two ß-sheets intersect in the center at roughly a right angle and form two asymmetric deep "saddles" that may serve to bind ligands. Nuclear magnetic resonance chemical shift perturbation experiments show that neutral red and deoxyadenosine bind to Rv0577. Binding to deoxyadenosine is weaker with an estimated dissociation constants of 4.1 ± 0.3 mM for saddle 1. Heteronuclear steady-state {1H}-15N nuclear Overhauser effect, T1, and T2 values were generally uniform throughout the sequence with only a few modest pockets of differences. Circular dichroism spectroscopy characterization of the thermal stability of Rv0577 indicated irreversible unfolding upon heating with an estimated melting temperature of 56 °C.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desoxiadenosinas/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Rojo Neutro/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dicroismo Circular , Cristalografía por Rayos X , Desoxiadenosinas/química , Calor/efectos adversos , Péptidos y Proteínas de Señalización Intracelular , Cinética , Ligandos , Conformación Molecular , Rojo Neutro/química , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Streptomyces coelicolor/metabolismo , Homología Estructural de Proteína
6.
J Biol Chem ; 291(44): 22961-22969, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27601474

RESUMEN

Monitoring the environment with serine/threonine protein kinases is critical for growth and survival of Mycobacterium tuberculosis, a devastating human pathogen. Protein kinase B (PknB) is a transmembrane serine/threonine protein kinase that acts as an essential regulator of mycobacterial growth and division. The PknB extracellular domain (ECD) consists of four repeats homologous to penicillin-binding protein and serine/threonine kinase associated (PASTA) domains, and binds fragments of peptidoglycan. These properties suggest that PknB activity is modulated by ECD binding to peptidoglycan substructures, however, the molecular mechanisms underpinning PknB regulation remain unclear. In this study, we report structural and genetic characterization of the PknB ECD. We determined the crystal structures of overlapping ECD fragments at near atomic resolution, built a model of the full ECD, and discovered a region on the C-terminal PASTA domain that has the properties of a ligand-binding site. Hydrophobic interaction between this surface and a bound molecule of citrate was observed in a crystal structure. Our genetic analyses in M. tuberculosis showed that nonfunctional alleles were produced either by deletion of any of single PASTA domain or by mutation of individual conserved residues lining the putative ligand-binding surface of the C-terminal PASTA repeat. These results define two distinct structural features necessary for PknB signal transduction, a fully extended ECD and a conserved, membrane-distal putative ligand-binding site.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Peptidoglicano/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Tuberculosis/metabolismo , Cristalografía por Rayos X , Humanos , Ligandos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/metabolismo , Tuberculosis/microbiología
7.
Nat Struct Mol Biol ; 22(2): 124-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25580578

RESUMEN

Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8,000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. Here we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, molecular-dynamics simulations and crystallography of active complexes. We find that the Mg(2+) cofactor activates two distinct molecular events: phosphoryl transfer (>10(5)-fold) and lid opening (10(3)-fold). In contrast, mutation of an essential active site arginine decelerates phosphoryl transfer 10(3)-fold without substantially affecting lid opening. Our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a preorganized active site.


Asunto(s)
Adenilato Quinasa/química , Adenilato Quinasa/metabolismo , Sitios de Unión , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares
8.
J Am Chem Soc ; 136(23): 8157-60, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24884374

RESUMEN

The enzyme soybean lipoxygenase (SLO) has served as a prototype for hydrogen-tunneling reactions, as a result of its unusual kinetic isotope effects (KIEs) and their temperature dependencies. Using a synergy of kinetic, structural, and theoretical studies, we show how the interplay between donor-acceptor distance and active-site flexibility leads to catalytic behavior previously predicted by quantum tunneling theory. Modification of the size of two hydrophobic residues by site-specific mutagenesis in SLO reduces the reaction rate 10(4)-fold and is accompanied by an enormous and unprecedented room-temperature KIE. Fitting of the kinetic data to a non-adiabatic model implicates an expansion of the active site that cannot be compensated by donor-acceptor distance sampling. A 1.7 Å resolution X-ray structure of the double mutant further indicates an unaltered backbone conformation, almost identical side-chain conformations, and a significantly enlarged active-site cavity. These findings show the compelling property of room-temperature hydrogen tunneling within a biological context and demonstrate the very high sensitivity of such tunneling to barrier width.


Asunto(s)
Carbono/química , Hidrógeno/química , Lipooxigenasa/química , Lipooxigenasa/metabolismo , Sitios de Unión , Catálisis , Simulación por Computador , Transporte de Electrón , Activación Enzimática , Isótopos/química , Cinética , Ácidos Linoleicos/química , Lipooxigenasa/genética , Modelos Moleculares , Mutación , Conformación Proteica , Teoría Cuántica , Glycine max/enzimología , Especificidad por Sustrato , Temperatura
9.
J Biol Chem ; 289(30): 20422-33, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24928517

RESUMEN

Many Gram-positive bacteria coordinate cellular processes by signaling through Ser/Thr protein kinases (STPKs), but the architecture of these phosphosignaling cascades is unknown. To investigate the network structure of a prokaryotic STPK system, we comprehensively explored the pattern of signal transduction in the Mycobacterium tuberculosis Ser/Thr kinome. Autophosphorylation is the dominant mode of STPK activation, but the 11 M. tuberculosis STPKs also show a specific pattern of efficient cross-phosphorylation in vitro. The biochemical specificity intrinsic to each kinase domain was used to map the provisional signaling network, revealing a three-layer architecture that includes master regulators, signal transducers, and terminal substrates. Fluorescence microscopy revealed that the STPKs are specifically localized in the cell. Master STPKs are concentrated at the same subcellular sites as their substrates, providing additional support for the biochemically defined network. Together, these studies imply a branched functional architecture of the M. tuberculosis Ser/Thr kinome that could enable horizontal signal spreading. This systems-level approach provides a biochemical and spatial framework for understanding Ser/Thr phospho-signaling in M. tuberculosis, which differs fundamentally from previously defined linear histidine kinase cascades.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Bacterianas/genética , Activación Enzimática/fisiología , Mycobacterium tuberculosis/genética , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética
10.
Elife ; 3: e02375, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24843025

RESUMEN

Superelongation complexes (SECs) are essential for transcription elongation of many human genes, including the integrated HIV-1 genome. At the HIV-1 promoter, the viral Tat protein binds simultaneously to the nascent TAR RNA and the CycT1 subunit of the P-TEFb kinase in a SEC. To understand the preferential recruitment of SECs by Tat and TAR, we determined the crystal structure of a quaternary complex containing Tat, P-TEFb, and the SEC scaffold, AFF4. Tat and AFF4 fold on the surface of CycT1 and interact directly. Interface mutations in the AFF4 homolog AFF1 reduced Tat-AFF1 affinity in vivo and Tat-dependent transcription from the HIV promoter. AFF4 binding in the presence of Tat partially orders the CycT1 Tat-TAR recognition motif and increases the affinity of Tat-P-TEFb for TAR 30-fold. These studies indicate that AFF4 acts as a two-step filter to increase the selectivity of Tat and TAR for SECs over P-TEFb alone.DOI: http://dx.doi.org/10.7554/eLife.02375.001.


Asunto(s)
Regulación Viral de la Expresión Génica , Productos del Gen tat/genética , Duplicado del Terminal Largo de VIH/genética , VIH-1/genética , Factor B de Elongación Transcripcional Positiva/genética , Proteínas Virales/genética , Productos del Gen tat/metabolismo , Genoma Viral , Humanos , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Unión Proteica/genética , Conformación Proteica , ARN Viral/genética , ARN Viral/aislamiento & purificación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Elongación Transcripcional , Proteínas Virales/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(22): 8037-42, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843173

RESUMEN

Bacterial growth and cell division are coordinated with hydrolysis of the peptidoglycan (PG) layer of the cell wall, but the mechanisms of regulation of extracellular PG hydrolases are not well understood. Here we report the biochemical, structural, and genetic analysis of the Mycobacterium tuberculosis homolog of the transmembrane PG-hydrolase regulator, FtsX. The purified FtsX extracellular domain binds the PG peptidase Rv2190c/RipC N-terminal segment, causing a conformational change that activates the enzyme. Deletion of ftsEX and ripC caused similar phenotypes in Mycobacterium smegmatis, as expected for genes in a single pathway. The crystal structure of the FtsX extracellular domain reveals an unprecedented fold containing two lobes connected by a flexible hinge. Mutations in the hydrophobic cleft between the lobes reduce RipC binding in vitro and inhibit FtsX function in M. smegmatis. These studies suggest how FtsX recognizes RipC and support a model in which a conformational change in FtsX links the cell division apparatus with PG hydrolysis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Factores de Virulencia/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Pared Celular/enzimología , Cristalografía por Rayos X , Activación Enzimática/fisiología , Hidrólisis , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/genética , Fenotipo , Conformación Proteica , Estructura Terciaria de Proteína , Transducción de Señal/fisiología , Factores de Virulencia/química , Factores de Virulencia/genética
12.
Proc Natl Acad Sci U S A ; 111(8): 2978-83, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516143

RESUMEN

To identify lipids with roles in tuberculosis disease, we systematically compared the lipid content of virulent Mycobacterium tuberculosis with the attenuated vaccine strain Mycobacterium bovis bacillus Calmette-Guérin. Comparative lipidomics analysis identified more than 1,000 molecular differences, including a previously unknown, Mycobacterium tuberculosis-specific lipid that is composed of a diterpene unit linked to adenosine. We established the complete structure of the natural product as 1-tuberculosinyladenosine (1-TbAd) using mass spectrometry and NMR spectroscopy. A screen for 1-TbAd mutants, complementation studies, and gene transfer identified Rv3378c as necessary for 1-TbAd biosynthesis. Whereas Rv3378c was previously thought to function as a phosphatase, these studies establish its role as a tuberculosinyl transferase and suggest a revised biosynthetic pathway for the sequential action of Rv3377c-Rv3378c. In agreement with this model, recombinant Rv3378c protein produced 1-TbAd, and its crystal structure revealed a cis-prenyl transferase fold with hydrophobic residues for isoprenoid binding and a second binding pocket suitable for the nucleoside substrate. The dual-substrate pocket distinguishes Rv3378c from classical cis-prenyl transferases, providing a unique model for the prenylation of diverse metabolites. Terpene nucleosides are rare in nature, and 1-TbAd is known only in Mycobacterium tuberculosis. Thus, this intersection of nucleoside and terpene pathways likely arose late in the evolution of the Mycobacterium tuberculosis complex; 1-TbAd serves as an abundant chemical marker of Mycobacterium tuberculosis, and the extracellular export of this amphipathic molecule likely accounts for the known virulence-promoting effects of the Rv3378c enzyme.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Lípidos/biosíntesis , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/patogenicidad , Conformación Proteica , Transferasas Alquil y Aril/genética , Proteínas Bacterianas/genética , Cromatografía por Intercambio Iónico , Dimerización , Lípidos/química , Lípidos/genética , Espectrometría de Masas , Estructura Molecular , Virulencia
13.
Protein Sci ; 23(4): 481-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24452911

RESUMEN

Resuscitation promoting factor (Rpf) proteins, which hydrolyze the sugar chains in cell-wall peptidoglycan (PG), play key roles in prokaryotic cell elongation, division, and escape from dormancy to vegetative growth. Like other bacteria, Mycobacterium tuberculosis (Mtb) expresses multiple Rpfs, none of which is individually essential. This redundancy has left unclear the distinct functions of the different Rpfs. To explore the distinguishing characteristics of the five Mtb Rpfs, we determined the crystal structure of the RpfE catalytic domain. The protein adopts the characteristic Rpf fold, but the catalytic cleft is narrower compared to Mtb RpfB. Also in contrast to RpfB, in which the substrate-binding surfaces are negatively charged, the corresponding RpfE catalytic pocket and predicted peptide-binding sites are more positively charged at neutral pH. The complete reversal of the electrostatic potential of the substrate-binding site suggests that the different Rpfs function optimally at different pHs or most efficiently hydrolyze different micro-domains of PG. These studies provide insights into the molecular determinants of the evolution of functional specialization in Rpfs.


Asunto(s)
Proteínas Bacterianas/química , Dominio Catalítico , Citocinas/química , Mycobacterium tuberculosis/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Cristalografía por Rayos X , Citocinas/genética , Citocinas/metabolismo , Modelos Moleculares , Conformación Proteica , Electricidad Estática
14.
Proc Natl Acad Sci U S A ; 111(1): E15-24, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24367103

RESUMEN

The positive transcription elongation factor b (P-TEFb) stimulates RNA polymerase elongation by inducing the transition of promoter proximally paused polymerase II into a productively elongating state. P-TEFb itself is regulated by reversible association with various transcription factors/cofactors to form several multisubunit complexes [e.g., the 7SK small nuclear ribonucleoprotein particle (7SK snRNP), the super elongation complexes (SECs), and the bromodomain protein 4 (Brd4)-P-TEFb complex] that constitute a P-TEFb network controlling cellular and HIV transcription. These complexes have been thought to share no components other than the core P-TEFb subunits cyclin-dependent kinase 9 (CDK9) and cyclin T (CycT, T1, T2a, and T2b). Here we show that the AF4/FMR2 family member 1 (AFF1) is bound to CDK9-CycT and is present in all major P-TEFb complexes and that the tripartite CDK9-CycT-AFF1 complex is transferred as a single unit within the P-TEFb network. By increasing the affinity of the HIV-encoded transactivating (Tat) protein for CycT1, AFF1 facilitates Tat's extraction of P-TEFb from 7SK snRNP and the formation of Tat-SECs for HIV transcription. Our data identify AFF1 as a ubiquitous P-TEFb partner and demonstrate that full Tat transactivation requires the complete SEC.


Asunto(s)
Ciclina T/química , Proteínas de Unión al ADN/fisiología , Proteínas Nucleares/fisiología , Factor B de Elongación Transcripcional Positiva/química , Ribonucleoproteínas Nucleares Pequeñas/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Alanina/genética , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Quinasa 9 Dependiente de la Ciclina/química , Células HeLa , Humanos , Proteínas Nucleares/química , Unión Proteica , Estructura Terciaria de Proteína , Factores de Transcripción/química , Activación Transcripcional , Factores de Elongación Transcripcional
15.
Proc Natl Acad Sci U S A ; 111(1): 237-42, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24363322

RESUMEN

To increase the power of X-ray crystallography to determine not only the structures but also the motions of biomolecules, we developed methods to address two classic crystallographic problems: putting electron density maps on the absolute scale of e(-)/Å(3) and calculating the noise at every point in the map. We find that noise varies with position and is often six to eight times lower than thresholds currently used in model building. Analyzing the rescaled electron density maps from 485 representative proteins revealed unmodeled conformations above the estimated noise for 45% of side chains and a previously hidden, low-occupancy inhibitor of HIV capsid protein. Comparing the electron density maps in the free and nucleotide-bound structures of three human protein kinases suggested that substrate binding perturbs distinct intrinsic allosteric networks that link the active site to surfaces that recognize regulatory proteins. These results illustrate general approaches to identify and analyze alternative conformations, low-occupancy small molecules, solvent distributions, communication pathways, and protein motions.


Asunto(s)
Cristalografía por Rayos X/métodos , Electrones , Proteínas Quinasas/química , Proteínas/química , Sitio Alostérico , Anisotropía , Bacteriófago T4/química , Quinasa de la Caseína II/química , Dominio Catalítico , Simulación por Computador , Quinasa 2 Dependiente de la Ciclina/química , Proteínas Quinasas Asociadas a Muerte Celular/química , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Interleucina-1beta/química , Movimiento (Física) , Muramidasa/química , Conformación Proteica , Proteínas Tirosina Quinasas Receptoras/química , Receptor EphA3 , Reproducibilidad de los Resultados , Venenos de Escorpión/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química
16.
PLoS One ; 9(12): e116249, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25551456

RESUMEN

Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.


Asunto(s)
Proteínas Bacterianas/química , Mycobacterium tuberculosis/química , Proteínas de Unión a las Penicilinas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxipeptidasas/química , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular Dirigida , Proteínas de Escherichia coli/química , Meropenem , Modelos Moleculares , Mutación , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Filogenia , Conformación Proteica , Tienamicinas/química , Tienamicinas/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(52): E5069-77, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24309377

RESUMEN

Bacteria are able to adapt to dramatically different microenvironments, but in many organisms, the signaling pathways, transcriptional programs, and downstream physiological changes involved in adaptation are not well-understood. Here, we discovered that osmotic stress stimulates a signaling network in Mycobacterium tuberculosis regulated by the eukaryotic-like receptor Ser/Thr protein kinase PknD. Expression of the PknD substrate Rv0516c was highly induced by osmotic stress. Furthermore, Rv0516c disruption modified peptidoglycan thickness, enhanced antibiotic resistance, and activated genes in the regulon of the alternative σ-factor SigF. Phosphorylation of Rv0516c regulated the abundance of EspA, a virulence-associated substrate of the type VII ESX-1 secretion system. These findings identify an osmosensory pathway orchestrated by PknD, Rv0516c, and SigF that enables adaptation to osmotic stress through cell wall remodeling and virulence factor production. Given the widespread occurrence of eukaryotic-like Ser/Thr protein kinases in bacteria, these proteins may play a broad role in bacterial osmosensing.


Asunto(s)
Adaptación Biológica/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Mycobacterium tuberculosis/fisiología , Presión Osmótica/fisiología , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Western Blotting , Proteínas Fluorescentes Verdes , Análisis por Micromatrices , Mycobacterium tuberculosis/enzimología , Concentración Osmolar , Fosforilación
18.
J Biol Chem ; 288(44): 31549-55, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24019530

RESUMEN

Peptidoglycan hydrolases are key enzymes in bacterial cell wall homeostasis. Understanding the substrate specificity and biochemical activity of peptidoglycan hydrolases in Mycobacterium tuberculosis is of special interest as it can aid in the development of new cell wall targeting therapeutics. In this study, we report biochemical and structural characterization of the mycobacterial N-acetylmuramyl-L-alanine amidase, Rv3717. The crystal structure of Rv3717 in complex with a dipeptide product shows that, compared with previously characterized peptidoglycan amidases, the enzyme contains an extra disulfide-bonded ß-hairpin adjacent to the active site. The structure of two intermediates in assembly reveal that Zn(2+) binding rearranges active site residues, and disulfide formation promotes folding of the ß-hairpin. Although Zn(2+) is required for hydrolysis of muramyl dipeptide, disulfide oxidation is not required for activity on this substrate. The orientation of the product in the active site suggests a role for a conserved glutamate (Glu-200) in catalysis; mutation of this residue abolishes activity. The product binds at the head of a closed tunnel, and the enzyme showed no activity on polymerized peptidoglycan. These results point to a potential role for Rv3717 in peptidoglycan fragment recycling.


Asunto(s)
Amidohidrolasas/química , Proteínas Bacterianas/química , Dipéptidos/química , Mycobacterium tuberculosis/enzimología , Peptidoglicano/química , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Dipéptidos/genética , Dipéptidos/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Mycobacterium tuberculosis/genética , Peptidoglicano/genética , Peptidoglicano/metabolismo , Zinc/química , Zinc/metabolismo
19.
PLoS Pathog ; 9(2): e1003197, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23468634

RESUMEN

Peptidoglycan hydrolases are a double-edged sword. They are required for normal cell division, but when dysregulated can become autolysins lethal to bacteria. How bacteria ensure that peptidoglycan hydrolases function only in the correct spatial and temporal context remains largely unknown. Here, we demonstrate that dysregulation converts the essential mycobacterial peptidoglycan hydrolase RipA to an autolysin that compromises cellular structural integrity. We find that mycobacteria control RipA activity through two interconnected levels of regulation in vivo-protein interactions coordinate PG hydrolysis, while proteolysis is necessary for RipA enzymatic activity. Dysregulation of RipA protein complexes by treatment with a peptidoglycan synthase inhibitor leads to excessive RipA activity and impairment of correct morphology. Furthermore, expression of a RipA dominant negative mutant or of differentially processed RipA homologues reveals that RipA is produced as a zymogen, requiring proteolytic processing for activity. The amount of RipA processing differs between fast-growing and slow-growing mycobacteria and correlates with the requirement for peptidoglycan hydrolase activity in these species. Together, the complex picture of RipA regulation is a part of a growing paradigm for careful control of cell wall hydrolysis by bacteria during growth, and may represent a novel target for chemotherapy development.


Asunto(s)
Pared Celular/enzimología , Complejos Multienzimáticos/metabolismo , Mycobacterium smegmatis/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , División Celular , ADN Bacteriano/análisis , Inhibidores Enzimáticos/farmacología , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/ultraestructura , N-Acetil Muramoil-L-Alanina Amidasa/antagonistas & inhibidores , Proteolisis
20.
Elife ; 2: e00327, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23471103

RESUMEN

Human positive transcription elongation factor b (P-TEFb) phosphorylates RNA polymerase II and regulatory proteins to trigger elongation of many gene transcripts. The HIV-1 Tat protein selectively recruits P-TEFb as part of a super elongation complex (SEC) organized on a flexible AFF1 or AFF4 scaffold. To understand this specificity and determine if scaffold binding alters P-TEFb conformation, we determined the structure of a tripartite complex containing the recognition regions of P-TEFb and AFF4. AFF4 meanders over the surface of the P-TEFb cyclin T1 (CycT1) subunit but makes no stable contacts with the CDK9 kinase subunit. Interface mutations reduced CycT1 binding and AFF4-dependent transcription. AFF4 is positioned to make unexpected direct contacts with HIV Tat, and Tat enhances P-TEFb affinity for AFF4. These studies define the mechanism of scaffold recognition by P-TEFb and reveal an unanticipated intersubunit pocket on the AFF4 SEC that potentially represents a target for therapeutic intervention against HIV/AIDS. DOI:http://dx.doi.org/10.7554/eLife.00327.001.


Asunto(s)
VIH-1/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Represoras/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Regulación Viral de la Expresión Génica , VIH-1/genética , VIH-1/crecimiento & desarrollo , Humanos , Modelos Moleculares , Factor B de Elongación Transcripcional Positiva/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Elongación de la Transcripción Genética , Factores de Elongación Transcripcional , Replicación Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...