Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neuroimmunol ; 324: 143-148, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30190086

RESUMEN

Sepsis is one of the leading causes of mortality in intensive care units besides causing profound alterations in the brain. One of the structures notably affected during sepsis is the hypothalamus, resulting in important physiopathological consequences. Recently, we provided evidence that the presence of neuroinflammation, oxidative stress, and apoptosis in the hypothalamus of septic rats, is accompanied by impairment of arginine vasopressin (AVP) secretion. We had also demonstrated that sepsis survivor animals present attenuated AVP secretion after osmotic challenge, suggesting a persistent inflammation in the hypothalamus. However, the long-term course of inflammation in the hypothalamus remains unclear. Thus, we induced sepsis by cecal ligation and puncture (CLP) in Wistar rats and, five days after sepsis induction, the hypothalamus of each animal was collected for analysis. Nonmanipulated animals (naive) were used as controls. We found that CLP-induced morphological alterations in microglial cells are accompanied by an increase in Iba-1 immunoreactivity. Moreover, we observed enhanced expression of NF-κB and CREB transcription factors, which are well known to modulate the immune response. Additionally, we found that phosphorylation of GSK3α/ß (a kinase upstream to the CREB signaling pathway) was increased, as well as COX-2, iNOS, and IL-6 that are canonic inflammatory proteins. Thus, our results indicated the presence of sustained activation of resident glial cells that may result in neuroinflammation and cholinergic neurotransmission disruptions in the hypothalamus.


Asunto(s)
Acetilcolinesterasa/metabolismo , Microambiente Celular/fisiología , Hipotálamo/metabolismo , Mediadores de Inflamación/metabolismo , Microglía/metabolismo , Sepsis/metabolismo , Animales , Activación Enzimática , Hipotálamo/patología , Inflamación/metabolismo , Inflamación/patología , Masculino , Microglía/patología , Ratas , Ratas Wistar , Sepsis/patología
2.
Front Physiol ; 4: 103, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23720630

RESUMEN

Mitochondrial redox imbalance has been implicated in mechanisms of aging, various degenerative diseases and drug-induced toxicity. Statins are safe and well-tolerated therapeutic drugs that occasionally induce myotoxicity such as myopathy and rhabdomyolysis. Previous studies indicate that myotoxicity caused by statins may be linked to impairment of mitochondrial functions. Here, we report that 1-h incubation of permeabilized rat soleus muscle fiber biopsies with increasing concentrations of simvastatin (1-40 µM) slowed the rates of ADP-or FCCP-stimulated respiration supported by glutamate/malate in a dose-dependent manner, but caused no changes in resting respiration rates. Simvastatin (1 µM) also inhibited the ADP-stimulated mitochondrial respiration supported by succinate by 24% but not by TMPD/ascorbate. Compatible with inhibition of respiration, 1 µM simvastatin stimulated lactate release from soleus muscle samples by 26%. Co-incubation of muscle samples with 1 mM L-carnitine, 100 µM mevalonate or 10 µM coenzyme Q10 (Co-Q10) abolished simvastatin effects on both mitochondrial glutamate/malate-supported respiration and lactate release. Simvastatin (1 µM) also caused a 2-fold increase in the rate of hydrogen peroxide generation and a decrease in Co-Q10 content by 44%. Mevalonate, Co-Q10 or L-carnitine protected against stimulation of hydrogen peroxide generation but only mevalonate prevented the decrease in Co-Q10 content. Thus, independently of Co-Q10 levels, L-carnitine prevented the toxic effects of simvastatin. This suggests that mitochondrial respiratory dysfunction induced by simvastatin, is associated with increased generation of superoxide, at the levels of complexes-I and II of the respiratory chain. In all cases the damage to these complexes, presumably at the level of 4Fe-4S clusters, is prevented by L-carnitine.

3.
Int J Obes (Lond) ; 31(10): 1586-95, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17471296

RESUMEN

OBJECTIVE: We recently described that hypertriglyceridemic apolipoprotein (apo) CIII transgenic mice show increased whole body metabolic rate. In this study, we used these apo CIII-expressing mice, combined or not with the expression of the natural promoter-driven CETP gene, to test the hypothesis that both proteins modulate diet-induced obesity. MEASUREMENTS AND RESULTS: Mice expressing apo CIII, CIII/CETP, CETP and nontransgenic (NonTg) mice were maintained on a high-fat diet (14% fat by weight) during 20 weeks after weaning. At the end of this period, all groups exhibited the expected lipemic phenotype. Fasting glucose levels were neither affected by the high-fat diet nor by the distinct genotypes. However, apo CIII mice showed significantly higher glycemia ( approximately 35%) and lower insulin levels ( approximately 45%) in the fed state, compared with the NonTg mice. The apo CIII mice presented significantly increased body weight, lipid content of the carcass ( approximately 25%), visceral adipose tissue mass (about twofold) and adipocyte size ( approximately 25%) compared with the CETP and NonTg mice. The CETP expression in the apo CIII background normalized the subcutaneous adipose depot and visceral adipocyte size to the levels of NonTg mice. Plasma leptin levels were lower in CETP groups (25-50%) and higher in the apo CIII mice. Similar core body temperature in all groups and similar liver mitochondrial resting respiration rates in CIII and NonTg mice indicate no differences in basal energy expenditure rates among these mice fed a high-fat diet. CONCLUSION: The elevation of plasma apo CIII levels aggravates diet-induced obesity and the expression of physiological levels of circulating CETP reverses this adipogenic effect, indicating a novel role for CETP in modulating adiposity.


Asunto(s)
Apolipoproteína C-III/fisiología , Proteínas de Transferencia de Ésteres de Colesterol/fisiología , Ayuno/metabolismo , Hipertrigliceridemia/metabolismo , Leptina/metabolismo , Animales , Composición Corporal/fisiología , Peso Corporal/fisiología , Ayuno/sangre , Hipertrigliceridemia/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA