Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7108, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925453

RESUMEN

Cortical activity patterns are strongly modulated by fast synaptic inhibition mediated through ionotropic, chloride-conducting receptors. Consequently, chloride homeostasis is ideally placed to regulate activity. We therefore investigated the stability of baseline [Cl-]i in adult mouse neocortex, using in vivo two-photon imaging. We found a two-fold increase in baseline [Cl-]i in layer 2/3 pyramidal neurons, from day to night, with marked effects upon both physiological cortical processing and seizure susceptibility. Importantly, the night-time activity can be converted to the day-time pattern by local inhibition of NKCC1, while inhibition of KCC2 converts day-time [Cl-]i towards night-time levels. Changes in the surface expression and phosphorylation of the cation-chloride cotransporters, NKCC1 and KCC2, matched these pharmacological effects. When we extended the dark period by 4 h, mice remained active, but [Cl-]i was modulated as for animals in normal light cycles. Our data thus demonstrate a daily [Cl-]i modulation with complex effects on cortical excitability.


Asunto(s)
Simportadores , Corteza Visual , Animales , Ratones , Cloruros/metabolismo , Simportadores/metabolismo , Células Piramidales/fisiología , Homeostasis , Corteza Visual/metabolismo
2.
Brain ; 146(7): 2814-2827, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36572952

RESUMEN

Brain-state transitions are readily apparent from changes in brain rhythms,1 but are difficult to predict, suggestive that the underlying cause is latent to passive recording methods. Among the most important transitions, clinically, are the starts of seizures. We here show that an 'active probing' approach may have several important benefits for epileptic management, including by helping predict these transitions. We used mice expressing the optogenetic actuator, channelrhodopsin, in pyramidal cells, allowing this population to be stimulated in isolation. Intermittent stimulation at frequencies as low as 0.033 Hz (period = 30 s) delayed the onset of seizure-like events in an acute brain slice model of ictogenesis, but the effect was lost if stimulation was delivered at even lower frequencies (1/min). Notably, active probing additionally provides advance indication of when seizure-like activity is imminent, revealed by monitoring the postsynaptic response to stimulation. The postsynaptic response, recorded extracellularly, showed an all-or-nothing change in both amplitude and duration, a few hundred seconds before seizure-like activity began-a sufficient length of time to provide a helpful warning of an impending seizure. The change in the postsynaptic response then persisted for the remainder of the recording, indicative of a state change from a pre-epileptic to a pro-epileptic network. This occurred in parallel with a large increase in the stimulation-triggered Ca2+ entry into pyramidal dendrites, and a step increase in the number of evoked postsynaptic action potentials, both consistent with a reduction in the threshold for dendritic action potentials. In 0 Mg2+ bathing media, the reduced threshold was not associated with changes in glutamatergic synaptic function, nor of GABAergic release from either parvalbumin or somatostatin interneurons, but simulations indicate that the step change in the optogenetic response can instead arise from incremental increases in intracellular [Cl-]. The change in the response to stimulation was replicated by artificially raising intracellular [Cl-], using the optogenetic chloride pump, halorhodopsin. By contrast, increases in extracellular [K+] cannot account for the firing patterns in the response to stimulation, although this, and other cellular changes, may contribute to ictal initiation in other circumstances. We describe how these various cellular changes form a synergistic network of positive feedback mechanisms, which may explain the precipitous nature of seizure onset. This model of seizure initiation draws together several major lines of epilepsy research as well as providing an important proof-of-principle regarding the utility of open-loop brain stimulation for clinical management of the condition.


Asunto(s)
Epilepsia , Optogenética , Ratones , Animales , Convulsiones , Encéfalo , Células Piramidales/fisiología , Potenciales de Acción/fisiología
3.
Mol Cell ; 81(14): 2929-2943.e6, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34166608

RESUMEN

The HCN1-4 channel family is responsible for the hyperpolarization-activated cation current If/Ih that controls automaticity in cardiac and neuronal pacemaker cells. We present cryoelectron microscopy (cryo-EM) structures of HCN4 in the presence or absence of bound cAMP, displaying the pore domain in closed and open conformations. Analysis of cAMP-bound and -unbound structures sheds light on how ligand-induced transitions in the channel cytosolic portion mediate the effect of cAMP on channel gating and highlights the regulatory role of a Mg2+ coordination site formed between the C-linker and the S4-S5 linker. Comparison of open/closed pore states shows that the cytosolic gate opens through concerted movements of the S5 and S6 transmembrane helices. Furthermore, in combination with molecular dynamics analyses, the open pore structures provide insights into the mechanisms of K+/Na+ permeation. Our results contribute mechanistic understanding on HCN channel gating, cyclic nucleotide-dependent modulation, and ion permeation.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/fisiología , Iones/metabolismo , Proteínas Musculares/metabolismo , Canales de Potasio/metabolismo , Línea Celular , Microscopía por Crioelectrón/métodos , AMP Cíclico/metabolismo , Células HEK293 , Humanos
4.
Nat Methods ; 15(11): 969-976, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30377377

RESUMEN

Currently available inhibitory optogenetic tools provide short and transient silencing of neurons, but they cannot provide long-lasting inhibition because of the requirement for high light intensities. Here we present an optimized blue-light-sensitive synthetic potassium channel, BLINK2, which showed good expression in neurons in three species. The channel is activated by illumination with low doses of blue light, and in our experiments it remained active over (tens of) minutes in the dark after the illumination was stopped. This activation caused long periods of inhibition of neuronal firing in ex vivo recordings of mouse neurons and impaired motor neuron response in zebrafish in vivo. As a proof-of-concept application, we demonstrated that in a freely moving rat model of neuropathic pain, the activation of a small number of BLINK2 channels caused a long-lasting (>30 min) reduction in pain sensation.


Asunto(s)
Potenciales de Acción , Hiperalgesia/fisiopatología , Neuronas/fisiología , Optogenética , Dolor/fisiopatología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Proteínas Recombinantes de Fusión/metabolismo , Animales , Femenino , Luz , Masculino , Ratones Endogámicos C57BL , Neuronas/citología , Paclitaxel/toxicidad , Dolor/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Pez Cebra
5.
Methods Mol Biol ; 1596: 271-285, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293893

RESUMEN

Ion channels control the electrical properties of cells by opening and closing (gating) in response to a wide palette of environmental and physiological stimuli. Endowing ion channels with the possibility to be gated by remotely applied stimuli, such as light, provides a tool for in vivo control of cellular functions in behaving animals. We have engineered a synthetic light-gated potassium (K+) channel by connecting an exogenous plant photoreceptor LOV2 domain to the K+ channel pore Kcv. Here, we describe the experimental strategy that we have used to evolve the properties of the channel toward full control of light on pore gating. Our method combines rational and random mutagenesis of the channel followed by a yeast-based screening system for light-activated K+ conductance.


Asunto(s)
Canales de Potasio/metabolismo , Potasio/metabolismo , Saccharomyces cerevisiae/metabolismo , Activación del Canal Iónico/fisiología , Transporte Iónico/fisiología , Luz
6.
Science ; 348(6235): 707-10, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25954011

RESUMEN

The present palette of opsin-based optogenetic tools lacks a light-gated potassium (K(+)) channel desirable for silencing of excitable cells. Here, we describe the construction of a blue-light-induced K(+) channel 1 (BLINK1) engineered by fusing the plant LOV2-Jα photosensory module to the small viral K(+) channel Kcv. BLINK1 exhibits biophysical features of Kcv, including K(+) selectivity and high single-channel conductance but reversibly photoactivates in blue light. Opening of BLINK1 channels hyperpolarizes the cell to the K(+) equilibrium potential. Ectopic expression of BLINK1 reversibly inhibits the escape response in light-exposed zebrafish larvae. BLINK1 therefore provides a single-component optogenetic tool that can establish prolonged, physiological hyperpolarization of cells at low light intensities.


Asunto(s)
Optogenética , Proteínas Recombinantes de Fusión/efectos de la radiación , Animales , Avena/metabolismo , Fenómenos Biofísicos , Células HEK293 , Humanos , Larva , Luz , Fototropinas/química , Fototropinas/genética , Canales de Potasio/química , Canales de Potasio/genética , Conformación Proteica/efectos de la radiación , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Virales/química , Proteínas Virales/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...