Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1843(11): 2685-97, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25110348

RESUMEN

Cytokinesis in yeast and mammalian cells is a highly coordinated process mediated by the constriction of an actomyosin ring. In yeasts, it is accompanied by the formation of a chitinous primary septum. Although much is known about the regulation of cytokinesis in budding yeast, overlapping functions of redundant genes complicates genetic analyses. Here, we investigated the effects of various deletion mutants on cytokinesis in the milk yeast Kluyveromyces lactis. To determine the spatiotemporal parameters of cytokinesis components, live-cell imaging of fluorophor-tagged KlMyo1 and a new Lifeact probe for KlAct1 was employed. In contrast to Saccharomyces cerevisiae, where deletion of ScMYO1 is lethal, Klmyo1 deletion was temperature-sensitive. Transmission and scanning electron microscopy demonstrated that the Klmyo1 deletion cells had a defect in the formation of the primary septum and in cell separation; this result was confirmed by FACS analyses. Deletion of KlCYK3 was lethal, whereas in S. cerevisiae a cyk3 deletion is synthetically lethal with hof1 deletion. Growth of Klhof1 mutants was osmoremedial at 25°C, as it is in S. cerevisiae. CYK3 and HOF1 genes cross-complemented in both species, suggesting that they are functional homologs. Inn1, a common interactor for these two regulators, was essential in both yeasts and the encoding genes did not cross-complement. The C2 domain of the Inn1 homologs conferred species specificity. Thus, our work establishes K. lactis as a model yeast to study cytokinesis with less genetic redundancy than S. cerevisiae. The viability of Klmyo1 deletions provides an advantage over budding yeast to study actomyosin-independent cytokinesis. Moreover, the lethality of Klcyk3 null mutants suggests that there are fewer functional redundancies with KlHof1 in K. lactis.

2.
PLoS Pathog ; 9(6): e1003475, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825955

RESUMEN

The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Genoma Fúngico/fisiología , Estudio de Asociación del Genoma Completo , Oryza/microbiología , Enfermedades de las Plantas/microbiología
3.
Appl Microbiol Biotechnol ; 97(17): 7779-90, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23636694

RESUMEN

The rice pathogen Fusarium fujikuroi is known for producing a wide range of secondary metabolites such as pigments, mycotoxins, and a group of phytohormones, the gibberellic acids (GAs). Bioactive forms of these diterpenes are responsible for hyperelongation of rice stems, yellowish chlorotic leaves, and reduced grain formation during the bakanae disease leading to severely decreased crop yields. GAs are also successfully applied in agriculture and horticulture as plant growth regulators to enhance crop yields, fruit size, and to induce earlier flowering. In this study, six F. fujikuroi wild-type and mutant strains differing in GA yields and the spectrum of produced GAs were cultivated in high-quality lab fermenters for optimal temperature and pH control and compared regarding their growth, GA production, and GA gene expression levels. Comparative analysis of the six strains revealed that strain 6314/ΔDES/ΔPPT1, holding mutations in two GA biosynthetic genes and an additional deletion of the 4'-phosphopantetheinyl transferase gene PPT1, exhibits the highest total GA amount. Expression studies of two GA biosynthesis genes, CPS/KS and DES, showed a constantly high expression level for both genes under production conditions (nitrogen limitation) in all strains. By cultivating these genetically engineered mutant strains, we were able to produce not only mixtures of different bioactive GAs (GA3, GA4, and GA7) but also pure GA4 or GA7. In addition, we show that the GA yields are not only determined by different production rates, but also by different decomposition rates of the end products GA3, GA4, and GA7 explaining the varying GA levels of genetically almost identical mutant strains.


Asunto(s)
Fusarium/genética , Fusarium/metabolismo , Giberelinas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Dioxigenasas/genética , Dioxigenasas/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Giberelinas/química , Estructura Molecular , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
4.
Appl Microbiol Biotechnol ; 97(7): 2979-95, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22983595

RESUMEN

The rice pathogen Fusarium fujikuroi is known to produce a wide range of secondary metabolites, such as the pigments bikaverin and fusarubins, the mycotoxins fusarins and fusaric acid, and the phytohormones gibberellic acids (GAs), which are applied as plant growth regulators in agri- and horticulture. The development of high-producing strains is a prerequisite for the efficient biotechnological production of GAs. In this work, we used different molecular approaches for strain improvement to directly affect expression of early isoprenoid genes as well as GA biosynthetic genes. Overexpression of the first GA pathway gene ggs2, encoding geranylgeranyl diphosphate synthase 2, or additional integration of ggs2 and cps/ks, the latter encoding the bifunctional ent-copalyldiphosphate synthase/ent-kaurene synthase, revealed an enhanced production level of 150%. However, overexpression of hmgR and fppS, encoding the key enzymes of the mevalonate pathway, hydroxymethylglutaryl coenzyme A reductase, and farnesyldiphosphate synthase, resulted in a reduced production level probably due to a negative feedback regulation of HmgR. Subsequent deletion of the transmembrane domains of HmgR and overexpression of the remaining catalytic domain led to an increased GA content (250%). Using green fluorescent protein and mCherry fusion constructs, we localized Cps/Ks in the cytosol, Ggs2 in small point-like structures, which are not the peroxisomes, and HmgR at the endoplasmatic reticulum. In summary, it was shown for the first time that amplification or truncation of key enzymes of the isoprenoid and GA pathway results in elevated production levels (2.5-fold). Fluorescence microscopy revealed localization of the key enzymes in different compartments.


Asunto(s)
Enzimas/biosíntesis , Fusarium/genética , Fusarium/metabolismo , Giberelinas/biosíntesis , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Terpenos/metabolismo , Fusión Artificial Génica , Citosol/química , Enzimas/análisis , Enzimas/genética , Fusarium/química , Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Eliminación de Secuencia
5.
PLoS One ; 7(5): e37519, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22662164

RESUMEN

The heterothallic ascomycete Fusarium fujikuroi is a notorious rice pathogen causing super-elongation of plants due to the production of terpene-derived gibberellic acids (GAs) that function as natural plant hormones. Additionally, F. fujikuroi is able to produce a variety of polyketide- and non-ribosomal peptide-derived metabolites such as bikaverins, fusarubins and fusarins as well as metabolites from yet unidentified biosynthetic pathways, e.g. moniliformin. The key enzymes needed for their production belong to the family of polyketide synthases (PKSs) and non-ribosomal peptide synthases (NRPSs) that are generally known to be post-translationally modified by a Sfp-type 4'phosphopantetheinyl transferase (PPTase). In this study we provide evidence that the F. fujikuroi Sfp-type PPTase FfPpt1 is essentially involved in lysine biosynthesis and production of bikaverins, fusarubins and fusarins, but not moniliformin as shown by analytical methods. Concomitantly, targeted Ffppt1 deletion mutants reveal an enhancement of terpene-derived metabolites like GAs and volatile substances such as α-acorenol. Pathogenicity assays on rice roots using fluorescent labeled wild-type and Ffppt1 mutant strains indicate that lysine biosynthesis and iron acquisition but not PKS and NRPS metabolism is essential for establishment of primary infections of F. fujikuroi. Additionally, FfPpt1 is involved in conidiation and sexual mating recognition possibly by activating PKS- and/or NRPS-derived metabolites that could act as diffusible signals. Furthermore, the effect on iron acquisition of Ffppt1 mutants led us to identify a previously uncharacterized putative third reductive iron uptake system (FfFtr3/FfFet3) that is closely related to the FtrA/FetC system of A. fumigatus. Functional characterization provides evidence that both proteins are involved in iron acquisition and are liable to transcriptional repression of the homolog of the Aspergillus GATA-type transcription factor SreA under iron-replete conditions. Targeted deletion of the first Fusarium homolog of this GATA-type transcription factor-encoding gene, Ffsre1, strongly indicates its involvement in regulation of iron homeostasis and oxidative stress resistance.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fusarium/enzimología , Fusarium/patogenicidad , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Proteínas Bacterianas/genética , Vías Biosintéticas , Diterpenos/metabolismo , Fusarium/genética , Factores de Transcripción GATA/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Hierro/metabolismo , Lisina/biosíntesis , Oryza/microbiología , Estrés Oxidativo , Péptido Sintasas/metabolismo , Filogenia , Raíces de Plantas/microbiología , Sintasas Poliquetidas/metabolismo , Desarrollo Sexual/genética , Transcripción Genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...