Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629894

RESUMEN

We demonstrate for the first time in-cell dynamic nuclear polarization (DNP) in conjunction with flow cytometry sorting to address the cellular heterogeneity of in-cell samples. Utilizing a green fluorescent protein (GFP) reporter of HIV reactivation, we correlate increased 15N resonance intensity with cytokine-driven HIV reactivation in a human cell line model of HIV latency. As few as 10% GFP+ cells could be detected by DNP nuclear magnetic resonance (NMR). The inclusion of flow cytometric sorting of GFP+ cells prior to analysis by DNP-NMR further boosted signal detection through increased cellular homogeneity with respect to GFP expression. As few as 3.6 million 15N-labeled GFP+ cells could be readily detected with DNP-NMR. Importantly, cell sorting allowed for the comparison of cytokine-treated GFP+ and GFP- cells in a batch-consistent way. This provides an avenue for normalizing NMR spectral contributions from background cellular processes following treatment with cellular modulators. We also demonstrate the remarkable stability of AMUPol (a nitroxide biradical) in Jurkat T cells and achieved in-cell enhancements of 46 with 10 mM AMUPol, providing an excellent model system for further in-cell DNP-NMR studies. This represents an important contribution to improving in-cell methods for the study of endogenously expressed proteins by DNP-NMR.


Asunto(s)
Citometría de Flujo/métodos , Infecciones por VIH/diagnóstico por imagen , Resonancia Magnética Nuclear Biomolecular/métodos , Humanos , Células Jurkat , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Óxidos de Nitrógeno/farmacología , Activación Viral/fisiología
2.
J Phys Chem B ; 124(12): 2323-2330, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32083876

RESUMEN

Dynamic nuclear polarization (DNP) is used to improve the inherently poor sensitivity of nuclear magnetic resonance spectroscopy by transferring spin polarization from electrons to nuclei. However, DNP radicals within the sample can have detrimental effects on nuclear spins close to the polarizing agent. Chirped microwave pulses and electron decoupling (eDEC) attenuate these effects in model systems, but this approach is yet to be applied to intact cells or cellular lysates. Herein, we demonstrate for the first time exceptionally fast 1H T1DNP times of just 200 and 300 ms at 90 and 6 K, respectively, using a newly synthesized methylated trityl radical within intact human cells. We further demonstrate that eDEC can also be applied to intact human cells and human and bacterial cell lysates. We investigate eDEC efficiency at different temperatures, with different solvents, and with two trityl radical derivatives. At 90 K, eDEC yields a 13C signal intensity increase of 8% in intact human cells and 10% in human and bacterial cell lysates. At 6 K, eDEC provides larger intensity increases of 15 and 39% in intact human cells and cell lysates, respectively. Combining the manipulation of electron spins with frequency-chirped pulses and sample temperatures approaching absolute zero is a promising avenue for executing rapid, high-sensitivity magic-angle spinning DNP in complex cellular environments.


Asunto(s)
Electrones , Microondas , Humanos , Espectroscopía de Resonancia Magnética , Temperatura
3.
J Magn Reson ; 303: 1-6, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30978570

RESUMEN

Spherical rotors in magic angle spinning (MAS) experiments have significant advantages over traditional cylindrical rotors including simplified spinning implementation, easy sample exchange, more efficient microwave coupling for dynamic nuclear polarization (DNP), and feasibility of downscaling to access higher spinning frequencies. Here, we implement spherical rotors with 4 mm outside diameter (o.d.) and demonstrate spinning >28 kHz using a single aperture for spinning gas. We show a modified stator geometry to improve fiber optic detection, increase NMR filling factor, and improve alignment for sample exchange and microwave irradiation. Higher NMR Rabi frequencies were obtained using smaller radiofrequency (RF) coils on small-diameter spherical rotors, compared to our previous implementation of MAS spheres with an o.d. of 9.5 mm. We report nutation fields of 110 kHz on 13C with 820 W of input power and 100 kHz on 1H with 800 W of input power. Proton decoupling fields of 78 kHz were applied over 20 ms of signal acquisition without any sign of arcing. Compared to our initial demonstration of a split coil for 9.5 mm spheres, this current implementation of a double-saddle coil inductor for 4 mm spheres not only intensifies the RF fields, but also improves RF homogeneity. We achieve an 810°/90° nutation intensity ratio of 0.84 at 300.197 MHz (1H). We also show electromagnetic simulations predicting a nearly 3-fold improvement in electron Rabi frequency of 0.99 MHz (with 4 mm spheres) compared to 0.38 MHz (with 3.2 mm cylinders), with 5 W of incident microwave power. Further improvements in magnetic resonance spin control are expected as RF inductors and microwave coupling are optimized for spherical rotors and scaled down to the micron scale.


Asunto(s)
Espectroscopía de Resonancia Magnética/instrumentación , Algoritmos , Simulación por Computador , Campos Electromagnéticos , Diseño de Equipo , Tecnología de Fibra Óptica , Gases/química , Microondas , Ondas de Radio
4.
J Magn Reson ; 297: 23-32, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30342370

RESUMEN

Dynamic nuclear polarization (DNP) with cryogenic magic angle spinning (MAS) provides significant improvements in NMR sensitivity, yet presents unique technical challenges. Here we describe a custom cryostat and suite of NMR probes capable of manipulating nuclear spins with multi-resonant radiofrequency circuits, cryogenic spinning below 6 K, sample exchange, and microwave coupling for DNP. The corrugated waveguide and six transfer lines needed for DNP and cryogenic spinning functionality are coupled to the probe from the top of the magnet. Transfer lines are vacuum-jacketed and provide bearing and drive gas, variable temperature fluid, two exhaust pathways, and a sample ejection port. The cryostat thermally isolates the magnet bore, thereby protecting the magnet and increasing cryogen efficiency. This novel design supports cryogenic MAS-DNP performance over an array of probes without altering DNP functionality. We present three MAS probes (two supporting 3.2 mm rotors and one supporting 9.5 mm rotors) interfacing with the single cryostat. Mechanical details, transmission line radio frequency design, and performance of the cryostat and three probes are described.


Asunto(s)
Espectroscopía de Resonancia Magnética/instrumentación , Frío , Diseño de Equipo , Espectroscopía de Resonancia Magnética/métodos , Imanes , Microondas , Ondas de Radio
5.
Sci Adv ; 4(9): eaau1540, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30255153

RESUMEN

Magic angle spinning (MAS) is commonly used in nuclear magnetic resonance of solids to improve spectral resolution. Rather than using cylindrical rotors for MAS, we demonstrate that spherical rotors can be spun stably at the magic angle. Spherical rotors conserve valuable space in the probe head and simplify sample exchange and microwave coupling for dynamic nuclear polarization. In this current implementation of spherical rotors, a single gas stream provides bearing gas to reduce friction, drive propulsion to generate and maintain angular momentum, and variable temperature control for thermostating. Grooves are machined directly into zirconia spheres, thereby converting the rotor body into a robust turbine with high torque. We demonstrate that 9.5-mm-outside diameter spherical rotors can be spun at frequencies up to 4.6 kHz with N2(g) and 10.6 kHz with He(g). Angular stability of the spinning axis is demonstrated by observation of 79Br rotational echoes out to 10 ms from KBr packed within spherical rotors. Spinning frequency stability of ±1 Hz is achieved with resistive heating feedback control. A sample size of 36 µl can be accommodated in 9.5-mm-diameter spheres with a cylindrical hole machined along the spinning axis. We further show that spheres can be more extensively hollowed out to accommodate 161 µl of the sample, which provides superior signal-to-noise ratio compared to traditional 3.2-mm-diameter cylindrical rotors.


Asunto(s)
Espectroscopía de Resonancia Magnética/instrumentación , Bromuros , Diseño de Equipo , Helio , Espectroscopía de Resonancia Magnética/métodos , Compuestos de Potasio , Circonio
6.
Biochemistry ; 57(31): 4741-4746, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29924582

RESUMEN

Solid state nuclear magnetic resonance (NMR) enables atomic-resolution characterization of the molecular structure and dynamics within complex heterogeneous samples, but it is typically insensitive. Dynamic nuclear polarization (DNP) increases the NMR signal intensity by orders of magnitude and can be performed in combination with magic angle spinning (MAS) for sensitive, high-resolution spectroscopy. Here we report MAS DNP experiments, for the first time, within intact human cells with >40-fold DNP enhancement and a sample temperature of <6 K. In addition to cryogenic MAS results at <6 K, we also show in-cell DNP enhancements of 57-fold at 90 K. In-cell DNP is demonstrated using biradicals and sterically shielded monoradicals as polarizing agents. A novel trimodal polarizing agent is introduced for DNP, which contains a nitroxide biradical, a targeting peptide for cell penetration, and a fluorophore for subcellular localization with confocal microscopy. The fluorescent polarizing agent provides in-cell DNP enhancements of 63-fold at a concentration of 2.7 mM. These experiments pave the way for structural characterization of biomolecules in an endogenous cellular context.


Asunto(s)
Colorantes Fluorescentes/química , Espectroscopía de Resonancia Magnética/métodos , Humanos , Microscopía Confocal , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular
7.
J Magn Reson ; 289: 45-54, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29471275

RESUMEN

We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/µs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

8.
J Magn Reson ; 286: 1-9, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29161649

RESUMEN

We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Células , Frío , Diseño Asistido por Computadora , Análisis de Elementos Finitos , Humanos , Hidrodinámica , Transición de Fase , Temperatura
9.
J Magn Reson ; 283: 71-78, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28888182

RESUMEN

Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K.


Asunto(s)
Espectroscopía de Resonancia Magnética/instrumentación , Nitrógeno/química , Frío , Gases , Espectroscopía de Resonancia Magnética/métodos , Microondas , Temperatura , Urea/química
10.
Sci Rep ; 7(1): 7456, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28785069

RESUMEN

Current antiretroviral therapy (ART) for HIV/AIDS slows disease progression by reducing viral loads and increasing CD4 counts. Yet ART is not curative due to the persistence of CD4+ T-cell proviral reservoirs that chronically resupply active virus. Elimination of these reservoirs through the administration of synergistic combinations of latency reversing agents (LRAs), such as histone deacetylase (HDAC) inhibitors and protein kinase C (PKC) modulators, provides a promising strategy to reduce if not eradicate the viral reservoir. Here, we demonstrate that largazole and its analogues are isoform-targeted histone deacetylase inhibitors and potent LRAs. Significantly, these isoform-targeted HDAC inhibitors synergize with PKC modulators, namely bryostatin-1 analogues (bryologs). Implementation of this unprecedented LRA combination induces HIV-1 reactivation to unparalleled levels and avoids global T-cell activation within resting CD4+ T-cells.


Asunto(s)
Brioestatinas/farmacología , VIH-1/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Activación Viral , Latencia del Virus/efectos de los fármacos , Brioestatinas/química , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Depsipéptidos/química , Depsipéptidos/farmacología , Sinergismo Farmacológico , Quimioterapia Combinada , Células HeLa , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Humanos , Células Jurkat , Activación de Linfocitos , Estructura Molecular , Tiazoles/química , Tiazoles/farmacología
11.
J Am Chem Soc ; 139(18): 6310-6313, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28429936

RESUMEN

Dynamic nuclear polarization (DNP) can enhance NMR sensitivity by orders of magnitude by transferring spin polarization from electron paramagnetic resonance (EPR) to NMR. However, paramagnetic DNP polarizing agents can have deleterious effects on NMR signals. Electron spin decoupling can mitigate these paramagnetic relaxation effects. We demonstrate electron decoupling experiments in conjunction with DNP and magic-angle-spinning NMR spectroscopy. Following a DNP and spin diffusion period, the microwave irradiation frequency is quickly tuned on-resonance with electrons on the DNP polarizing agent. The electron decoupling performance shows a strong dependence on the microwave frequency and DNP polarization time. Microwave frequency sweeps through the EPR line shape are shown as a time domain strategy to significantly improve electron decoupling. For 13C spins on biomolecules frozen in a glassy matrix, electron decoupling reduces the line widths by 11% (47 Hz) and increases the intensity by 14%.


Asunto(s)
Electrones , Rotación , Espectroscopía de Resonancia Magnética , Microondas
12.
Solid State Nucl Magn Reson ; 72: 79-89, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26482131

RESUMEN

Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Microondas , Compuestos Alílicos/química , Modelos Moleculares , Conformación Molecular , Ácidos Sulfónicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...