Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 382(6666): 69-72, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37796999

RESUMEN

The motion of line defects (dislocations) has been studied for more than 60 years, but the maximum speed at which they can move is unresolved. Recent models and atomistic simulations predict the existence of a limiting velocity of dislocation motion between the transonic and subsonic ranges at which the self-energy of dislocation diverges, though they do not deny the possibility of the transonic dislocations. We used femtosecond x-ray radiography to track ultrafast dislocation motion in shock-compressed single-crystal diamond. By visualizing stacking faults extending faster than the slowest sound wave speed of diamond, we show the evidence of partial dislocations at their leading edge moving transonically. Understanding the upper limit of dislocation mobility in crystals is essential to accurately model, predict, and control the mechanical properties of materials under extreme conditions.

2.
Phys Rev E ; 104(3-2): 035206, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654211

RESUMEN

Laser experiments are becoming established as tools for astronomical research that complement observations and theoretical modeling. Localized strong magnetic fields have been observed at a shock front of supernova explosions. Experimental confirmation and identification of the physical mechanism for this observation are of great importance in understanding the evolution of the interstellar medium. However, it has been challenging to treat the interaction between hydrodynamic instabilities and an ambient magnetic field in the laboratory. Here, we developed an experimental platform to examine magnetized Richtmyer-Meshkov instability (RMI). The measured growth velocity was consistent with the linear theory, and the magnetic-field amplification was correlated with RMI growth. Our experiment validated the turbulent amplification of magnetic fields associated with the shock-induced interfacial instability in astrophysical conditions. Experimental elucidation of fundamental processes in magnetized plasmas is generally essential in various situations such as fusion plasmas and planetary sciences.

3.
Nat Commun ; 12(1): 4305, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262045

RESUMEN

Meteorites from interplanetary space often include high-pressure polymorphs of their constituent minerals, which provide records of past hypervelocity collisions. These collisions were expected to occur between kilometre-sized asteroids, generating transient high-pressure states lasting for several seconds to facilitate mineral transformations across the relevant phase boundaries. However, their mechanisms in such a short timescale were never experimentally evaluated and remained speculative. Here, we show a nanosecond transformation mechanism yielding ringwoodite, which is the most typical high-pressure mineral in meteorites. An olivine crystal was shock-compressed by a focused high-power laser pulse, and the transformation was time-resolved by femtosecond diffractometry using an X-ray free electron laser. Our results show the formation of ringwoodite through a faster, diffusionless process, suggesting that ringwoodite can form from collisions between much smaller bodies, such as metre to submetre-sized asteroids, at common relative velocities. Even nominally unshocked meteorites could therefore contain signatures of high-pressure states from past collisions.

4.
Sci Adv ; 3(6): e1602705, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28630909

RESUMEN

The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of [Formula: see text] ~2 × 108 to 3.5 × 108 s-1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.

5.
Sci Adv ; 2(8): e1600157, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27493993

RESUMEN

Forsterite (Mg2SiO4) is one of the major planetary materials, and its behavior under extreme conditions is important to understand the interior structure of large planets, such as super-Earths, and large-scale planetary impact events. Previous shock compression measurements of forsterite indicate that it may melt below 200 GPa, but these measurements did not go beyond 200 GPa. We report the shock response of forsterite above ~250 GPa, obtained using the laser shock wave technique. We simultaneously measured the Hugoniot and temperature of shocked forsterite and interpreted the results to suggest the following: (i) incongruent crystallization of MgO at 271 to 285 GPa, (ii) phase transition of MgO at 285 to 344 GPa, and (iii) remelting above ~470 to 500 GPa. These exothermic and endothermic reactions are seen to occur under extreme conditions of pressure and temperature. They indicate complex structural and chemical changes in the system MgO-SiO2 at extreme pressures and temperatures and will affect the way we understand the interior processes of large rocky planets as well as material transformation by impacts in the formation of planetary systems.


Asunto(s)
Fenómenos Físicos , Presión , Compuestos de Silicona , Rayos Láser , Transición de Fase
6.
Sci Rep ; 5: 17713, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26634431

RESUMEN

Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M(2). Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~0.4-2.0 µm for photons with energies 6-14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...