Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Life (Basel) ; 13(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36983991

RESUMEN

Recently, the superficial fascia has been recognized as a specific anatomical structure between the two adipose layers-the superficial adipose tissue (SAT) and the deep adipose tissue (DAT). The evaluation of specific characteristics of cells, fibers, blood circulation, and innervation has shown that the superficial fascia has a clear and distinct anatomical identity, but knowledge about lymphatic vessels in relation to the superficial fascia has not been described. The aim of this study was to evaluate the presence of lymphatic vessels in the hypodermis, with a specific focus on the superficial fascia and in relation to the layered subdivision of the subcutaneous tissue into SAT and DAT. Tissue specimens were harvested from three adult volunteer patients during abdominoplasty and stained with D2-40 antibody for the lymphatic endothelium. In the papillary dermis, a huge presence of lymphatic vessels was highlighted, parallel to the skin surface and embedded in the loose connective tissue. In the superficial adipose tissue, thin lymphatic vessels (mean diameter of 11.6 ± 7.71 µm) were found, close to the fibrous septa connecting the dermis to the deeper layers. The deep adipose tissue showed a comparable overall content of lymphatic vessels with respect to the superficial layer; they followed the blood vessel and had a larger diameter. In the superficial fascia, the lymphatic vessels showed higher density and a larger diameter, in both the longitudinal and transverse directions along the fibers, as well as vessels that intertwined with one another, forming a rich network of vessels. This study demonstrated a different distribution of the lymphatic vessels in the various subcutaneous layers, especially in the superficial fascia, and the demonstration of the variable gauge of the vessels leads us to believe that they play different functional roles in the collection and transport of interstitial fluid-important factors in various surgical and rehabilitation fields.

2.
Diagnostics (Basel) ; 12(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35328120

RESUMEN

Langerhans cells represent the first immune cells that sense the entry of external molecules and microorganisms at the epithelial level in the skin. In this pilot case-study, we evaluated Langerhans cells density and progression of epidermal atrophy in permanent spinal cord injury (SCI) patients suffering with either lower motor neuron lesions (LMNSCI) or upper motor neuron lesions (UMNSCI), both submitted to surface electrical stimulation. Skin biopsies harvested from both legs were analyzed before and after 2 years of home-based Functional Electrical Stimulation for denervated degenerating muscles (DDM) delivered at home (h-bFES) by large anatomically shaped surface electrodes placed on the skin of the anterior thigh in the cases of LMNSCI patients or by neuromuscular electrical stimulation (NMES) for innervated muscles in the cases of UMNSCI persons. Using quantitative histology, we analyzed epidermal thickness and flattening and content of Langerhans cells. Linear regression analyses show that epidermal atrophy worsens with increasing years of LMNSCI and that 2 years of skin electrostimulation reverses skin changes, producing a significant recovery of epidermis thickness, but not changes in Langerhans cells density. In UMNSCI, we did not observe any statistically significant changes of the epidermis and of its content of Langerhans cells, but while the epidermal thickness is similar to that of first year-LMNSCI, the content of Langerhans cells is almost twice, suggesting that the LMNSCI induces an early decrease of immunoprotection that lasts at least 10 years. All together, these are original clinically relevant results suggesting a possible immuno-repression in epidermis of the permanently denervated patients.

3.
Eur J Transl Myol ; 31(4)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34738776

RESUMEN

Paolo Gava, (Conegliano, Treviso, September 1, 1946 - Stra, Venezia, Italy, July 19, 2021) was a sustainable resources engineer, who worked in Italy, France and England, leading research programs well before the current international interest in countering global warming. Passionate about Tango, Paolo kept himself in shape for many decades by running or pedaling or roller-skating, after years of training as a semi-professional athlete, competing and winning Italian and European short distance races in the Master classes. Then, Paolo applied his engineering skills to optimize comparisons between the results of the different Classes of Master Athletes, questioning the rules used by Italian and World Master Sports Associations. Friendly discussing during an after-dinner, he shocked us claiming that, in absence of diseases and trauma (Early Aging), the aging decay is a linear process from 30 to 110 years. Under our friendly pressure he was able to publish his first biomedical article, detailing his mathematical approaches and results in a 2015 issue of Experimental Aging Research, titled: Age-associated power decline from running, jumping and throwing male master world records. To honor his other legacies during his last six years of life, we add here further examples of Paolo's scientific studies and his relationships with senior colleagues and young students of sports and aging sciences.

4.
Eur J Transl Myol ; 31(4)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34761670

RESUMEN

The marathon is the most classic Olympic running event. In several cities worldwide it has become very popular with participation increasing during the last 20 years, particularly by Master Athletes. There are evidences that long-distance running could provide considerable health benefits for older runners, specifically risk reduction of cardiovascular diseases, cancer, diabetes, depression, and falls. Several studies have focused on the distribution of participants and their performance on famous marathons such as those of Berlin, Boston and New York. In this preliminary study we have analyzed data from several editions of the Venice marathon, a famous Italian race that attracts people from every corner of the world. The Venice marathon is listed in Abbott World Marathon Majors Wanda Age Group World Ranking and is Bronze Label certificated by IAAF, and Gold Label by FIDAL. The marathon starts outside Venice near Stra, then runs along the Brenta Riviera to Venice where the runners cross the canals over floating bridges set up for the race. For this study we analyzed data of the Venice marathon describing gender distribution in 17 editions (2003-2019), but groups of age-categories and their nationality only in 13 editions from 2007 to 2019. The analysis shows a steady increase in female participation, from 2003 to 2019.

5.
J Neuropathol Exp Neurol ; 80(8): 776-788, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34363662

RESUMEN

Skeletal muscle atrophy may occur with disease, injury, decreased muscle use, starvation, and normal aging. No reliably effective treatments for atrophy are available, thus research into the mechanisms contributing to muscle loss is essential. The ERG1A K+ channel contributes to muscle loss by increasing ubiquitin proteasome proteolysis (UPP) in the skeletal muscle of both unweighted and cachectic mice. Because the mechanisms which produce atrophy vary based upon the initiating factor, here we investigate atrophy produced by denervation. Using immunohistochemistry and immunoblots, we demonstrate that ERG1A protein abundance increases significantly in the Gastrocnemius muscle of rodents 7 days after both sciatic nerve transection and hind limb unweighting. Further, we reveal that ectopic expression of a Merg1a encoded plasmid in normal mouse Gastrocnemius muscle has no effect on activity of the NFκB transcription factor family, a group of proteins which contribute to muscle atrophy by modulation of the UPP. Further, although NFκB activity increases significantly after denervation, we show that expression of a plasmid encoding a dominant negative Merg1a mutant in Gastrocnemius muscle prior to denervation, has no effect on NFκB activity. Thus, although the ERG1A K+ channel increases UPP, it does not do so through modulation of NFκB transcription factors.


Asunto(s)
Canal de Potasio ERG1/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Animales , Desnervación/efectos adversos , Canal de Potasio ERG1/genética , Suspensión Trasera/efectos adversos , Masculino , Ratones , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología , Atrofia Muscular/etiología , FN-kappa B/metabolismo , Proteolisis , Ratas , Ratas Wistar
6.
Aging Clin Exp Res ; 33(7): 2053-2059, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34047931

RESUMEN

Persons suffering with systemic neuromuscular disorders or chronic organ failures, spend less time for daily physical activity, aggravating their mobility impairments. From 2020, patients at risk are also older adults, who, though negative for the SARS-Cov-2 infection, suffer with a fatigue syndrome due to home restriction/quarantine. Besides eventual psycological managements, it could be useful to offer to these patients a rehabilitation workouts easy to learn and to independently repeat at home (Full-Body In-Bed Gym). Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation (FES), we suggest for this fatigue syndrome a 10-20 min long daily routine of easy and safe physical exercises that may recover from muscle weakness the main 400 skeletal muscles used for every-day activities. Leg muscles could be trained also by an adjunctive neuro-muscular electrical stimulation (NMES) in frail old persons. Many of the exercises could be performed in bed (Full-Body in-Bed Gym), thus hospitalized patients can learn this light training before leaving the hospital. Full-Body in-Bed Gym is, indeed, an extension of well-established cardiovascular-ventilation rehabilitation training performed by patients after heavy surgery. Blood pressure readings, monitored before and after daily routine of Full-Body in-Bed Gym, demonstrate a transient decrease in peripheral resistance due to increased blood flow to major body muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the fatigue syndrome related to the restrictions/quarantine imposed to the general population during the COVID-19 pandemic.


Asunto(s)
COVID-19 , Terapia por Estimulación Eléctrica , Anciano , Estimulación Eléctrica , Ejercicio Físico , Humanos , Fuerza Muscular , Debilidad Muscular , Músculo Esquelético , Pandemias , SARS-CoV-2
7.
Eur J Transl Myol ; 31(1)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33709653

RESUMEN

Mobility-impaired persons, either very old or younger but suffering with systemic neuromuscular disorders or chronic organ failures, spend small amounts of time for daily physical activity, contributing to aggravate their poor mobility by resting muscle atrophy. Sooner or later the limitations to their mobility enforce them to bed and to more frequent hospitalizations. We include among these patients at risk those who are negative for the SARS-COV-2 infection, but suffering with COVID-19 pandemic syndrome. Beside managements of psychological symptoms, it is mandatory to offer to the last group physical rehabilitation approaches easy to learn and self-managed at home. Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation, we suggest also for chronic COVID-19 pandemic syndrome a 10-20 min long daily routine of easy and safe physical exercises that can activate, and recover from weakness, the main 400 skeletal muscles used for every-day mobility activities. Persons can do many of them in bed (Full-Body in-Bed Gym), and hospitalized patients can learn this light training before leaving the hospital. It is, indeed, an extension of well-established cardiovascular-respiratory rehabilitation training performed after heavy surgical interventions. Blood pressure readings, monitored before and after daily routine, demonstrate a transient decrease in peripheral resistance due to increased blood flow of many muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the COVID-19 pandemic syndrome.

8.
Medicine (Baltimore) ; 98(52): e18509, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31876739

RESUMEN

To evaluate progression of skin atrophy during 8 years of complete Conus-Cauda Syndrome and its recovery after 2 years of surface Functional Electrical Stimulation a cohort study was organized and implemented.Functional assessments, tissue biopsies, and follow-up were performed at the Wilhelminenspital, Vienna, Austria; skin histology and immunohistochemistry at the University of Padova, Italy on 13 spinal cord injury persons suffering up to 10 years of complete conus/cauda syndrome. Skin biopsies (n. 52) of both legs were analyzed before and after 2 years of home-based Functional Electrical Stimulation delivered by large anatomically shaped surface electrodes placed on the skin of the anterior thigh. Using quantitative histology we analyzed: 1. Epidermis atrophy by thickness and by area; 2. Skin flattening by computing papillae per mm and Interdigitation Index of dermal-epidermal junctions; 3. Presence of Langerhans cells.Linear regression analyses show that epidermal atrophy and flattening worsen with increasing years post- spinal cord injury and that 2 years of skin electrostimulation by large anatomically shaped electrodes reverses skin changes (pre-functional Electrical Stimulation vs post-functional Electrical Stimulation: thickness 39%, P < .0001; area 41%, P < .0001; papillae n/mm 35%, P < 0.0014; Interdigitation index 11%, P < 0.018), producing a significant recovery to almost normal levels of epidermis thickness and of dermal papillae, with minor changes of Langerhans cells, despite 2 additional years of complete Conus-Cauda Syndrome.In complete Conus-Cauda Syndrome patients, the well documented beneficial effects of 2 years of surface h-b Functional Electrical Stimulation on strength, bulk, and muscle fiber size of thigh muscles are extended to skin, suggesting that electrical stimulation by anatomically shaped electrodes fixed to the skin is also clinically relevant to counteract atrophy and flattening of the stimulated skin. Mechanisms, pros and cons are discussed.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Epidermis/patología , Enfermedades de la Piel/terapia , Traumatismos de la Médula Espinal/complicaciones , Médula Espinal , Adulto , Atrofia , Biopsia , Humanos , Persona de Mediana Edad , Piel/patología , Enfermedades de la Piel/etiología , Enfermedades de la Piel/patología , Traumatismos de la Médula Espinal/patología , Síndrome , Muslo , Adulto Joven
9.
PLoS One ; 14(9): e0223195, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31557257

RESUMEN

Although it is now recognized that women suffer from myofascial pain to a greater extent than men, and that the muscular fasciae can respond to hormonal stimuli, thanks to the expression of sex hormone receptors, how the fasciae can modify their structure under hormonal stimulation is not clear. In this work, an immunocytochemical analysis of collagen-I, collagen-III and fibrillin were carried out on fibroblasts isolated from human fascia lata after in vitro treatment with various levels of sex hormones ß-estradiol and/or relaxin-1, according to the phases of a woman's period (follicular, periovulatory, luteal, post-menopausal phases and pregnancy). This study demonstrates for the first time that fascial cells can modulate the production of some components of the extracellular matrix according to hormone levels, when treated with ß-estradiol: collagen-I falls from 6% of positivity in the follicular phase to 1.9 in the periovulatory phase. However, after the addition of relaxin-1 to the cell culture, the production of extracellular matrix decreased and remained at the same level (1.7% of collagen-I, at both follicular and periovulatory levels of hormones). These results confirm the antifibrotic function of relaxin-1, thanks to its ability to reduce matrix synthesis. They are also a first step in our understanding of how some hormonal dysfunctions in women can cause a dysregulation of extracellular matrix production in fasciae.


Asunto(s)
Estrógenos/metabolismo , Matriz Extracelular/metabolismo , Fascia/metabolismo , Músculo Esquelético/metabolismo , Relaxina/metabolismo , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Fascia/citología , Femenino , Fibrilinas/metabolismo , Fibroblastos/metabolismo , Humanos , Persona de Mediana Edad , Músculo Esquelético/citología , Cultivo Primario de Células/métodos
10.
Adv Exp Med Biol ; 1088: 585-591, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30390271

RESUMEN

After spinal cord injury (SCI), patients spend daily several hours in wheelchairs, sitting on their hamstring muscles. SCI causes muscle atrophy and wasting, which is especially severe after complete and permanent damage to lower motor neurons. A European Union (EU)-supported work demonstrates that electrical fields produced by large electrodes and purpose-developed electrical stimulators recover both quadriceps and hamstring muscles, producing a cushioning effect capable of benefitting SCI patients, even in the worst case of complete and long-term lower motor neuron denervation of leg muscles. We reported that 20 out of 25 patients completed a 2-year h-bFES program, which resulted in (1) a 35% increase in cross-sectional area of the quadriceps muscles (P < 0.001), (2) a 75% increase in mean diameter of quadriceps muscle fibers (P < 0.001), and (3) improvement of the ultrastructural organization of contractile machinery and of the Ca2+-handling system. Though not expected, after 2 years during which the 20 subjects performed 5 days per week h-bFES of the atrophic quadriceps muscles, the CT cross-sectional area of the hamstring muscles also augmented, increasing from 26.9+/-8.4 (cm2) to 30.7+/-9.8 (cm2), representing a significant (p ≤ 0.05) 15% increase. Here we show by quantitative muscle color computed tomography (QMC-CT) that h-bFES-induced tissue improvements are present also in the hamstring muscles: a once supposed drawback (lack of specificity of muscle activation by large surface electrodes) is responsible for a major positive clinical effect. Interestingly, 2 years of home-based FES by large surface electrodes reversed also the denervation-induced skin atrophy, increasing epidermis thickness. Finally, we would like to attract attention of the readers to quantitative muscle color computed tomography (QMC-CT), a sensitive quantitative imaging analysis of anatomically defined skeletal muscles introduced by our group to monitor atrophy/degeneration of skeletal muscle tissue. Worldwide acceptance of QMC-CT will provide physicians an improved tool to quantitate skeletal muscle atrophy/degeneration before and during rehabilitation strategies so that therapy for mobility-impaired persons can be better prescribed, evaluated, and altered where needed.


Asunto(s)
Terapia por Estimulación Eléctrica , Neuronas Motoras/patología , Atrofia Muscular/terapia , Traumatismos de la Médula Espinal/rehabilitación , Desnervación , Humanos , Músculo Esquelético/patología
11.
Eur J Transl Myol ; 28(1): 7373, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29686823

RESUMEN

Our previous studies have shown that severely atrophic Quadriceps muscles of spinal cord injury (SCI) patients suffering with complete conus and cauda equina lesions, and thus with permanent denervation-induced atrophy and degeneration of muscle fibers, were almost completely rescued to normal size after two years of home-based Functional Electrical Stimulation (h-bFES). Since we used large surface electrodes to stimulate the thigh muscles, we wanted to know if the skin was affected by long-term treatment. Here we report preliminary data of morphometry of skin biopsies harvested from legs of 3 SCI patients before and after two years of h-bFES to determine the total area of epidermis in transverse skin sections. By this approach we support our recently published results obtained randomly measuring skin thickness in the same biopsies after H-E stain. The skin biopsies data of three subjects, taken together, present indeed a statistically significant 30% increase in the area of the epidermis after two years of h-bFES. In conclusion, we confirm a long term positive modulation of electrostimulated epidermis, that correlates with the impressive improvements of the FES-induced muscle strength and bulk, and of the size of the muscle fibers after 2-years of h-bFES.

12.
Neurol Res ; 40(4): 277-282, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29447083

RESUMEN

Our studies have shown that atrophic Quadriceps muscles from spinal cord injury patients suffering with permanent denervation-induced atrophy and degeneration of muscle fibers, were almost completely rescued to normal size after two years of home-based functional electrical stimulation (h-bFES). Because we used surface electrodes to stimulate the muscle, we wanted to know how the skin was affected by the treatments. Here, we report preliminary data from histological morphometry of Hematoxylin-Eosin-stained paraffin-embedded skin sections harvested from the legs of three SCI patients before and after two years of h-bFES. Despite the heterogeneity of gender and time from SCI, comparing pre vs post h-bFES in these three SCI patients, the data show that: (1) In one subject skin biopsies from both the right and left leg experienced a statistically significant increase in thickness of the epidermis after two years of H-bFES; (2) In the other two subjects, one leg showed a significant increase in epidermis thickness, while in the other leg there was either small positive or negative non-significant changes in epidermis thickness; and (3) more importantly, comparison of grouped data from the three subjects shows that there was a significant 28% increase in the thickness of the epidermis in response to two years of h-bFES rehabilitation. In conclusion, the three educational cases show a long-term positive modulation of epidermis thickness after two years of h-bFES, thus extending to skin the positive results previously demonstrated in skeletal muscle, specifically, a substantial recovery of muscle mass and contractile function after long-term h-bFES.


Asunto(s)
Terapia por Estimulación Eléctrica , Epidermis/patología , Músculo Esquelético/fisiopatología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/inervación , Traumatismos de la Médula Espinal/fisiopatología , Resultado del Tratamiento
13.
Eur J Transl Myol ; 28(4): 7904, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30662700

RESUMEN

The sternomastoid (SM) muscle in rodents presents a peculiar distribution of fiber types with a steep gradient from the ventral, superficial, white portion to the dorsal, deep, red region, where muscle spindles are restricted. Cross section of the medial longitudinal third of the rat SM contains around 10,000 muscle fibers with a mean diameter of 51.28±12.62 (µm +/- SD). Transverse sections stained by Succinate Dehydrogenase (SDH) reaction clearly presents two distinct regions: the dorsal deep red portion encompassing a 40% cross section area contains a high percentage of packed SDH-positive muscle fibers, and the ventral superficial region which contains mainly SDH-negative muscle fibers. Indeed, the ventral superficial region of the rat SM muscle contains mainly fast 2B muscle fibers. These acidic ATPase pH 4.3-negative and SDH-negative 2B muscle fibers are the largest of the SM muscle, while the acidic ATPase pH 4.3-positive and SDH-positive Type 1 muscle fibers are the smallest. Here we show that in thin transverse cryosections only 2 or 3 muscle spindle are observed in the central part of the dorsal deep red portion of the SM muscle. Azan Mallory stained sections allow at the same time to count the spindles and to evaluate aging fibrosis of the skeletal muscle tissue. Though restricted in the muscle red region, SM spindles are embedded in perimysium, whose changes may influence their reflex activity. Our findings confirm that any comparisons of changes in number and percentage of muscle spindles and muscle fibers of the rat SM muscle will require morphometry of the whole muscle cross-section. Muscle biopsies of SM muscle from large mammals will only provide partial data on the size of the different types of muscle fibers biased by sampling. Nonetheless, histology of muscle tissue continue to provide practical and low-cost quantitative data to follow-up translational studies in rodents and beyond.

14.
Eur J Transl Myol ; 28(4): 7914, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30662702

RESUMEN

Our previous studies have shown that severely atrophic Quadriceps muscles of spinal cord injury (SCI) persons suffering with complete conus and cauda equina syndrome, and thus with permanent denervation-induced atrophy and degeneration of muscle, were almost completely rescued to normal size after two years of home based Functional Electrical Stimulation (hbFES). Since large surface electrodes were used to stimulate the denervated thigh muscles, we wanted to know if the skin was affected by this peculiar long-term treatment. Indeed, we demonstrated by two approaches that the epidermis decreases in thickness in the long term denervated persons, while it increased to almost pre-SCI values in hbFES compliant SCI persons. Here we report data of morphometry of skin biopsies from both legs of 18 SCI persons, harvested at enrolment in the Project RISE, to test if the Interdigitation Index, a simple measurement of the epidermal-dermal junction, may provide a further precise quantitative evidence of the flattening of the skin in those SCI persons. The Interdigitation Index of the 36 skin biopsies shows a higly significant linear correlation with the years of SCI (p < 0.001). Furthermore, when the 18 SCI persons are divided in two groups (1 to 3.9 versus 4.1 to 8.0 years from SCI, respectively) and the data are compared, the later Group presents a statistically significant -22% decrease (p, 0.029) of the Interdigitation Index. On the other hand counting the papille do not provide the same strong evidence. In conclusion, the Interdigitation Index is an additional sound quantitative structural biomarker of skin atrophy and flattening occurring in SCI. The result correlates with the much severe extent of atrophy of the permanently denervated thigh muscles, as determined at both macro and microscopic levels.We are confident that the Interdigitation Index will provide sound evidence that the effects of hbFES, we previously reported on skeletal muscle and epidermis thickness, will be extended to the dermal layer of the skin, suggesting a coordinated negative effects of SCI on skeletal muscle and skin, and an improvement of both tissues after hbFES. Incoming analyses will be extended to basal lamina, collagene types, elastic fibers and skin annexes in the subcutaneous layer.

15.
J Nanopart Res ; 19(9): 316, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959137

RESUMEN

Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size.

16.
J Anat ; 231(1): 121-128, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28466969

RESUMEN

The term 'visceral fascia' is a general term used to describe the fascia lying immediately beneath the mesothelium of the serosa, together with that immediately surrounding the viscera, but there are many types of visceral fasciae. The aim of this paper was to identify the features they have in common and their specialisations. The visceral fascia of the abdomen (corresponding to the connective tissue lying immediately beneath the mesothelium of the parietal peritoneum), thorax (corresponding to the connective tissue lying immediately beneath the mesothelium of the parietal pleura), lung (corresponding to the connective tissue under the mesothelium of the visceral pleura), liver (corresponding to the connective tissue under the mesothelium of the visceral peritoneum), kidney (corresponding to the Gerota fascia), the oesophagus (corresponding to its adventitia) and heart (corresponding to the fibrous layer of the pericardial sac) from eight fresh cadavers were sampled and analysed with histological and immunohistochemical stains to evaluate collagen and elastic components and innervation. Although the visceral fasciae make up a well-defined layer of connective tissue, the thickness, percentage of elastic fibres and innervation vary among the different viscera. In particular, the fascia of the lung has a mean thickness of 134 µm (±â€…21), that of heart 792 µm (±â€…132), oesophagus 105 µm (±â€…10), liver 131 µm (±â€…18), Gerota fascia 1009 µm (±â€…105) and the visceral fascia of the abdomen 987 µm (±â€…90). The greatest number of elastic fibres (9.79%) was found in the adventitia of the oesophagus. The connective layers lying immediately outside the mesothelium of the pleura and peritoneum also have many elastic fibres (4.98% and 4.52%, respectively), whereas the pericardium and Gerota fascia have few (0.27% and 1.38%). In the pleura, peritoneum and adventitia of the oesophagus, elastic fibres form a well-defined layer, corresponding to the elastic lamina, while in the other cases they are thinner and scattered in the connective tissue. Collagen fibres also show precise spatial organisation, being arranged in several layers. In each layer, all the fibrous bundles are parallel with each other, but change direction among layers. Loose connective tissue rich in elastic fibres is found between contiguous fibrous layers. Unmyelinated nerve fibres were found in all samples, but myelinated fibres were only found in some fasciae, such as those of the liver and heart, and the visceral fascia of the abdomen. According to these findings, we propose distinguishing the visceral fasciae into two large groups. The first group includes all the fasciae closely related to the individual organ and giving shape to it, supporting the parenchyma; these are thin, elastic and very well innervated. The second group comprises all the fibrous sheets forming the compartments for the organs and also connecting the internal organs to the musculoskeletal system. These fasciae are thick, less elastic and less innervated, but they contain larger and myelinated nerves. We propose to call the first type of fasciae 'investing fasciae', and the second type 'insertional fasciae'.


Asunto(s)
Fascia/anatomía & histología , Vísceras/anatomía & histología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Microvasc Res ; 97: 147-55, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25446009

RESUMEN

A new in vitro model system, adding advection and shear stress associated with a flowing medium, is proposed for the investigation of nanoparticles uptake and toxicity towards endothelial cells, since these processes are normally present when nanoparticles formulations are intravenously administered. In this model system, mechanical forces normally present in vivo, such as advection and shear stress were applied and carefully controlled by growing human umbilical vein endothelial cells inside a microfluidic device and continuously infusing gold nanoparticle (Au NPs) solution in the device. The tests performed in the microfluidic device were also run in multiwells, where no flow is present, so as to compare the two model systems and evaluate if gold nanoparticles toxicity differs under static and flow culture conditions. Full characterization of Au NPs in water and in culture medium was accomplished by standard methods. Two-photon fluorescence correlation spectroscopy was also employed to map the flow speed of Au NPs in the microfluidic device and characterize Au NPs before and after interactions with the cells. Au NPs uptake in both in vitro systems was investigated through electron and fluorescence microscopy and ICP-AES, and NPs toxicity measured through standard bio-analytical tests. Comparison between experiments run in multiwells and in microfluidic device plays a pivotal role for the investigation of nanoparticle-cell interaction and toxicity assessment: our work showed that administration of equal concentrations of Au NPs under flow conditions resulted in a reduced sedimentation of nanoparticle aggregates onto the cells and lower cytotoxicity with respect to experiments run in ordinary static conditions (multiwells).


Asunto(s)
Compuestos de Oro/toxicidad , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Velocidad del Flujo Sanguíneo , Técnicas de Cultivo de Célula , Células Cultivadas , Compuestos de Oro/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/ultraestructura , Humanos , Técnicas Analíticas Microfluídicas , Microscopía Confocal , Microscopía Electrónica de Transmisión , Flujo Sanguíneo Regional , Espectrometría de Fluorescencia/métodos , Estrés Mecánico , Factores de Tiempo
18.
Methods Mol Biol ; 1214: 197-214, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25468606

RESUMEN

In vitro assays that stimulate the formation of capillary-like structures by EC have become increasingly popular, because they allow the study of the EC's intrinsic ability to self-organize to form vascular-like patterns. Here we describe a widely applied protocol involving the use of basement membrane matrix (Matrigel) as a suitable environment to induce an angiogenic phenotype in cultured EC. EC differentiation on basement membrane matrix is a highly specific process, which recapitulates many steps in blood vessel formation and for this reason it is presently considered as a reliable in vitro tool to identify factors with potential antiangiogenic or pro-angiogenic properties. The morphological features of the obtained cell patterns can also be accurately quantified by computer-assisted image analysis and the main steps of such a procedure will be here outlined and discussed. The dynamics of in vitro EC self-organization is a complex biological process, involving a network of interactions between a high number of cells. For this reason, the combined use of in vitro experiments and computational modeling can represent a key approach to unravel how mechanical and chemical signaling by EC coordinates their organization into capillary-like tubes. Thus, a particularly helpful approach to modeling is also briefly described together with examples of its application.


Asunto(s)
Simulación por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Neovascularización Fisiológica , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Modelos Biológicos
19.
Drug Metab Dispos ; 42(10): 1617-26, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25030308

RESUMEN

Conflicting results have been obtained by clinical studies investigating the effect of liver cirrhosis on enzyme induction. Because ethical concerns do not give consent for methodologically rigorous studies in humans, we addressed this question by examining the effect of the prototypical inducer dexamethasone (DEX) on the pregnane X receptor (PXR)-mediated induction of CYP3A1 and 3A2 in a validated animal model of liver cirrhosis obtained by exposure of rats to carbon tetrachloride. For this purpose, we assessed mRNA levels, protein expressions, and enzymatic activities of both CYP3A enzymes, as well as mRNA and protein expressions of PXR in rat populations rigorously stratified according to the severity of liver insufficiency. Constitutive mRNA and protein expressions of CYP3A1 and CYP3A2 and their basal enzyme activities were not affected by liver dysfunction. DEX treatment markedly increased steady-state mRNA level, protein content, and enzymatic activity of CYP3A1 in healthy and cirrhotic rats, irrespective of the degree of liver dysfunction. On the contrary, the inducing effect of DEX on gene and protein expressions and enzyme activity of CYP3A2 was preserved in moderate liver insufficiency, whereas it was greatly curtailed when liver insufficiency became severe. mRNA and protein expressions of PXR were neither reduced by liver dysfunction nor increased by DEX treatment. These results indicate that even the inducibility of cytochrome P450 isoforms under the transcriptional control of the same nuclear receptor may be differentially affected by cirrhosis and may partly explain why conflicting results were obtained by human studies.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Cirrosis Hepática Experimental/metabolismo , Receptores de Esteroides/biosíntesis , Animales , Tetracloruro de Carbono , Dexametasona/farmacología , Inducción Enzimática , Expresión Génica/efectos de los fármacos , Cirrosis Hepática Experimental/inducido químicamente , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Receptor X de Pregnano , Ratas , Receptores de Esteroides/efectos de los fármacos
20.
Int J Mol Med ; 33(1): 111-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24270633

RESUMEN

Apoptosis represents the key mechanism for the removal of surplus, damaged, or aged cells, and deregulated apoptosis has been implicated in the etiology of diverse pathologies. There are two main pathways which are known to initiate apoptosis: the death receptor-dependent (extrinsic) pathway and the mitochondrial-dependent (intrinsic) pathway. In the intrinsic pathway, as a response to diverse signals from the cellular environment, a permeabilization of the mitochondrial outer membrane occurs, followed by the release of cytochrome c and the activation of the effector caspases, which leads to cell death. Recently, increased attention has been paid to the possible role of the protein neuroglobin, in the regulation of the apoptotic process, and data have been provided, demonstrating the ability of the protein to inhibit the intrinsic pathway of apoptosis by interacting with mitochondrial proteins. The molecular details of these interactions, however, remain largely undefined. In the present study, well recognized bioinformatics methods were applied to predict the possible interaction interfaces which the protein can exploit to interact with relevant proteins of the mitochondrial-dependent pathway of apoptosis. In the search for therapeutic approaches based on the modulation of apoptosis, such a computational prediction could represent a first, guiding step, for the design of strategies aimed at modulating these interactions, and tune the apoptotic process.


Asunto(s)
Apoptosis/fisiología , Globinas/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Mapeo de Interacción de Proteínas , Muerte Celular , Biología Computacional , Citocromos c/genética , Citocromos c/metabolismo , Globinas/genética , Humanos , Proteínas del Tejido Nervioso/genética , Neuroglobina , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...