Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38771135

RESUMEN

This study investigated the relationship between three respiratory support approaches on lung volume recruitment during the first two hours of postnatal life in preterm lambs. We estimated changes in lung aeration, measuring respiratory resistance and reactance by oscillometry at 5 Hz. We also measured intratracheal pressure in subsets of lambs. The first main finding is that sustained inflation (SI) applied noninvasively (Mask SI; n=7) or invasively (endotracheal tube, ETT SI; n=6) led to similar rapid lung volume recruitment (~6 min). In contrast, Mask continuous positive airway pressure (CPAP) without SI (n=6) resuscitation took longer (~30-45 min) to reach similar lung volume recruitment. The second main finding is that, in the first 15 min of postnatal life, the Mask CPAP without SI group closed their larynx during custom ventilator-driven expiration, leading to intratracheal positive end-expiratory pressure of ~17 cmH2O (instead of 8 cmH2O provided by the ventilator). In contrast, the Mask SI group used the larynx to limit inspiratory pressure to ~26 cmH2O (instead of 30 cmH2O provided by the ventilator). These different responses affected tidal volume, being larger in the Mask CPAP without SI group (8.4 ml/Kg, 6.7-9.3 IQR) compared to the Mask SI (5.0 ml/Kg, 4.4-5.2 IQR), and ETT SI groups (3.3 ml/Kg 2.6-3.7 IQR). Distinct physiological responses suggest that spontaneous respiratory activity of the larynx of preterm lambs at birth can uncouple pressure applied by the ventilator to that applied to the lung, leading to unpredictable lung pressure and tidal volumes delivery independently from the ventilator settings.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38563994

RESUMEN

BACKGROUND: Novel therapies are needed for bronchopulmonary dysplasia (BPD) because no effective treatment exists. Mesenchymal stromal cell extracellular vesicles (MSC-sEVs) have therapeutic efficacy in a mouse pup neonatal hyperoxia BPD model. We tested the hypothesis that MSC-sEVs will improve lung functional and structural development in mechanically ventilated preterm lambs. METHODS: Preterm lambs (~129d; equivalent to human lung development at ~28w gestation) were exposed to antenatal steroids, surfactant, caffeine citrate, and supported by mechanical ventilation for 6-7d. Lambs were randomized to blinded treatment with either MSC-sEVs (human bone marrow MSC-derived; 2x1011 particles iv; n=8; 4F/4M) or vehicle control (saline iv; 4F/4M). Treatment was at 6 and 78 hours post-delivery. Physiological targets were pulse oximetry O2 saturation 90-94% (PaO2 60-90 mmHg), PaCO2 45-60 mmHg (pH 7.25-7.35), and tidal volume 5-7 mL/Kg. RESULTS: MSC-sEVs-treated preterm lambs tolerated enteral feedings and maintained weight compared to the vehicle control group. Respiratory severity score, oxygenation index, A-a gradient, distal airspace wall thickness, and smooth muscle thickness around terminal bronchioles and pulmonary arterioles were lower (*) for the MSC-sEVs group versus the vehicle controls. S/F ratio, radial alveolar count, secondary septal volume density, alveolar capillary surface density, and protein abundance of VEGF-R2 were higher (*) for the MSC-sEVs versus the vehicle control group. CONCLUSIONS: MSC-sEVs improved respiratory system physiology and alveolar formation in mechanically ventilated preterm lambs. MSC-sEVs may be an effective and safe therapy for appropriate functional and structural development of the lung in preterm infants who require mechanical ventilation and are at-risk of developing BPD.

4.
Curr Pediatr Rev ; 19(4): 425-428, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36537595

RESUMEN

BACKGROUND: Nucleated red blood cells (NRBC) are very uncommon in the blood of children and adults, but small numbers are not rare in neonates on the day of birth. Elevated NRBC counts in neonates can be seen following erythropoietin dosing. Limited studies in human neonates suggest the time-interval between erythropoietin dosing and the first appearance of NRBC in the blood (the "NRBC emergence-time") is in excess of 24 hours. METHODS: We made serial blood counts (Sysmex veterinary analyzer) on ten newborn lambs; five were dosed with darbepoetin (10 µg/kg), and five were dosed with a vehicle-control to assess the NRBC emergence time under relatively controlled laboratory conditions. RESULTS: The first appearance of NRBC was at 24 h (2757 ± 3210 NRBC/µL vs. 0/µL in controls). Peak was 48-72 h (16,758 ± 8434/µL vs. 0/µL in controls), followed by fewer at 96 hours (7823 ± 7114/µL vs. 0/µL in controls). Similarly, reticulocytes peaked at 48-72 h (113,094 ± 3210/µL vs. 10,790 ± 5449/µL in controls), with no changes in platelets or leukocytes. CONCLUSION: The NRBC emergence time in newborn lambs is similar to reports from newborn humans. By extrapolation, if a neonate has a high NRBC at birth, the erythropoietic stimulus likely occurred within the interval 24 to perhaps 96+ hours prior to birth.


Asunto(s)
Eritroblastos , Eritropoyetina , Recién Nacido , Adulto , Niño , Humanos , Ovinos , Animales , Darbepoetina alfa , Animales Recién Nacidos , Recuento de Eritrocitos
5.
Pediatr Res ; 93(6): 1528-1538, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36030318

RESUMEN

BACKGROUND: Low levels of insulin-like growth factor-1 (IGF-1) protein in preterm human infants are associated with bronchopulmonary dysplasia (BPD). We used our preterm lamb model of BPD to determine (1) dosage of recombinant human (rh) IGF-1 bound to binding protein-3 (IGFBP-3) to reach infant physiologic plasma levels; and (2) whether repletion of plasma IGF-1 improves pulmonary and cardiovascular outcomes. METHODS: Group 1: normal, unventilated lambs from 128 days gestation through postnatal age 5 months defined normal plasma levels of IGF-1. Group 2: continuous infusion of rhIGF-1/rhIGFBP-3 (0.5, 1.5, or 4.5 mg/kg/day; n = 2) for 3 days in mechanically ventilated (MV) preterm lambs determined that 1.5 mg/kg/day dosage attained physiologic plasma IGF-1 concentration of ~125 ng/mL, which was infused in four more MV preterm lambs. RESULTS: Group 1: plasma IGF-1 protein increased from ~75 ng/mL at 128 days gestation to ~220 ng/L at 5 months. Group 2: pilot study of the optimal dosage (1.5 mg/kg/day rhIGF-1/rhIGFBP-3) in six MV preterm lambs significantly improved some pulmonary and cardiovascular outcomes (p < 0.1) compared to six MV preterm controls. RhIGF-1/rhIGFBP-3 was not toxic to the liver, kidneys, or lungs. CONCLUSIONS: Three days of continuous iv infusion of rhIGF-1/rhIGFBP-3 at 1.5 mg/kg/day improved some pulmonary and cardiovascular outcomes without toxicity. IMPACT: Preterm birth is associated with rapid decreases in serum or plasma IGF-1 protein level. This decline adversely impacts the growth and development of the lung and cardiovascular system. For this pilot study, continuous infusion of optimal dosage of rhIGF-1/rhIGFBP-3 (1.5 mg/kg/day) to maintain physiologic plasma IGF-1 level of ~125 ng/mL during mechanical ventilation for 3 days statistically improved some structural and biochemical outcomes related to the alveolar formation that would favor improved gas exchange compared to vehicle-control. We conclude that 3 days of continuous iv infusion of rhIGF-1/rhIGFBP-3 improved some physiological, morphological, and biochemical outcomes, without toxicity, in mechanically ventilated preterm lambs.


Asunto(s)
Displasia Broncopulmonar , Nacimiento Prematuro , Lactante , Femenino , Humanos , Animales , Recién Nacido , Ovinos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Displasia Broncopulmonar/tratamiento farmacológico , Proyectos Piloto , Recien Nacido Prematuro , Proteínas Recombinantes/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Oveja Doméstica
7.
Reprod Sci ; 29(4): 1271-1277, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35020187

RESUMEN

Sustaining impactful research within the field of perinatal biology requires training and retention of the next generations of physician-scientists and basic-scientists. Professional societies such as the Perinatal Research Society (PRS) have a unique role to play in training and retention of perinatal biologists. Here we report outcomes for an innovative Young Investigator Training Workshop created for the PRS. The PRS Workshop uses immersive, active-writing, and active-oral presentation design, with one-on-one feedback from NIH-funded faculty-mentors drawn from the PRS membership. Young investigator data were collected by anonymous surveys of young investigators, NIH RePORTER, and individual young investigator follow-up. Ninety-seven young investigators attended the Workshops over the period 2013-2018. Young investigators were physician- (73%) and PhD- (27%) scientists at the rank of clinical fellow/postdoctoral fellow (27%) or instructor/assistant professor (73%). Participation by underrepresented minority (URM) young investigators was 14%. Young investigators received NIH and non-NIH funding, with 80% of young investigators receiving new funding since the Workshop that they attended. NIH funding was received by 31% of young investigators in the form of K-series awards, R01 equivalents, and other NIH awards. In conclusion, our PRS young investigator Workshop serves as a model to facilitate training of emerging physician- and basic-scientists by scientific societies.


Asunto(s)
Investigación Biomédica , Humanos , Mentores , Investigadores , Estados Unidos
8.
Pediatr Res ; 92(5): 1247-1254, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33958718
9.
Ann Biomed Eng ; 49(12): 3540-3549, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34725768

RESUMEN

Recent clinical studies have shown that traumatic brain injury is a significant risk factor for stroke. Motivated to better understand possible mechanisms of this association, we studied subfailure disruption of the intima in overstretched sheep cerebral arteries, as this has been implicated in the increased risk of stroke following blunt cerebrovascular injury. Middle cerebral arteries from four age groups (ranging from fetal to adult) were stretched axially to failure, and intimal disruption was captured with a video camera. All vessels demonstrated intimal disruption prior to catastrophic failure, with nearly all incurring disruption at stretch values well below those at ultimate stress (means of 1.56 and 1.73, respectively); the lowest stretch associated with intimal disruption was 1.29. The threshold of intimal failure was independent of age. Additional analysis showed that disruption included failure of both the endothelium and internal elastic lamina. Although our experiments were conducted at quasi-static rates, the results likely have important implications for vessel function following trauma. Future work should seek to identify subfailure disruption of the cerebrovasculature in head trauma.


Asunto(s)
Arteria Cerebral Media/crecimiento & desarrollo , Arteria Cerebral Media/fisiopatología , Túnica Íntima/fisiopatología , Animales , Lesiones Traumáticas del Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Factores de Riesgo , Ovinos , Estrés Mecánico , Accidente Cerebrovascular/etiología , Heridas no Penetrantes/fisiopatología
10.
CJC Open ; 3(5): 574-584, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34036257

RESUMEN

BACKGROUND: Adults born preterm (< 37 weeks' gestation) exhibit altered cardiac growth and are susceptible to cardiac dysfunction. Sheep studies have shown that moderate preterm birth results in maladaptive structural remodelling of the cardiac ventricles. The aim of this study was to examine ventricular structure in lambs born at a greater severity of preterm birth and ventilated postnatally. METHODS: Former-preterm lambs delivered at 128 days' gestation, and mechanically ventilated for a week after birth, were compared with unventilated lambs born at term (150 days' gestation), at 2 months (term: n = 10, former-preterm: n = 8), and 5 months (term: n = 9, former-preterm: n = 8) term-equivalent age. The right ventricle and left ventricle plus septum were analysed using immunohistochemistry, histology, and stereology. RESULTS: Cardiomyocyte number, cross-sectional area, proliferation, and apoptosis were not affected by preterm birth or age. Left ventricle plus septum interstitial collagen levels increased with age (P = 0.0015) and were exacerbated by preterm birth (P = 0.0006; 2 months term: 0.57% ± 0.07%, former-preterm: 1.44% ± 0.18%; 5 months term: 1.37% ± 0.25%, former-preterm: 2.15% ± 0.31%). Right ventricle interstitial collagen levels increased with age (P = 0.012) but were not affected by preterm birth. CONCLUSION: This study is the first to explore the effect of preterm birth combined with modern neonatal interventions on the ventricular myocardium in lambs. There was no adverse impact on cardiomyocyte growth in early postnatal life. Of concern, however, there was increased collagen deposition in the preterm hearts, which has the potential to induce cardiac dysfunction, especially if it becomes exaggerated with ageing.


INTRODUCTION: Les adultes nés avant terme (< 37 semaines de grossesse) montrent une altération de la croissance cardiaque et sont exposés à une dysfonction cardiaque. Les études sur les moutons ont montré que la prématurité modérée entraîne un remodelage structurel inadapté des ventricules du cœur. L'objectif de la présente étude était d'examiner la structure ventriculaire des agneaux grands prématurés et oxygénés après la naissance. MÉTHODES: Les agneaux anciens prématurés nés après 128 jours de gestation et sous respirateur durant une semaine ont été comparés aux agneaux nés à terme qui n'avaient pas été sous respirateur (150 jours de gestation) à l'âge du terme, soit deux mois (à terme : n = 10, anciens prématurés : n = 8) et cinq mois (à terme : n = 9, anciens prématurés : n = 8). Le ventricule droit et le ventricule gauche plus le septum ont été analysés par immunohistochimie, histologie et stéréologie. RÉSULTATS: Le nombre de cardiomyocytes, la surface en coupe transversale, la prolifération et l'apoptose n'étaient pas affectés par la naissance prématurée ou l'âge. Les concentrations interstitielles en collagène du ventricule gauche plus le septum augmentaient avec l'âge (P = 0,0015) et étaient exacerbées par la naissance prématurée (P = 0,0006; âge du terme, deux mois : [à terme : 0,57 % ± 0,07 %, anciens prématurés : 1,44 % ± 0,18 % ]; âge du terme, cinq mois : [à terme : 1,37 % ± 0,25 %, anciens prématurés : 2,15 % ± 0,31 %]). Les concentrations interstitielles en collagène du ventricule droit augmentaient avec l'âge (P = 0,012), mais n'étaient pas affectées par la naissance avant terme. CONCLUSION: Il s'agit de la première étude qui porte sur la combinaison des effets de la naissance avant terme aux interventions néonatales modernes sur le myocarde ventriculaire des agneaux. Aucune conséquence sur la croissance des cardiomyocytes dans la phase précoce de la vie postnatale n'a été observée. Toutefois, le dépôt accru de collagène dans le cœur des prématurés est préoccupant puisqu'il a le potentiel d'induire une dysfonction cardiaque, particulièrement s'il s'exacerbe avec le vieillissement.

12.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L248-L262, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34009031

RESUMEN

Invasive mechanical ventilation (IMV) and exposure to oxygen-rich gas during early postnatal life are contributing factors for long-term pulmonary morbidities faced by survivors of preterm birth and bronchopulmonary dysplasia. The duration of IMV that leads to long-term pulmonary morbidities is unknown. We compared two durations of IMV (3 h vs. 6 days) during the first 6-7 days of postnatal life in preterm lambs to test the hypothesis that minimizing the duration of IMV will improve long-term respiratory system mechanics and structural outcomes later in life. Moderately preterm (∼85% gestation) lambs were supported by IMV for either 3 h or 6 days before weaning from all respiratory support to become former preterm lambs. Respiratory system mechanics and airway reactivity were assessed monthly from 1 to 6 mo of chronological postnatal age by the forced oscillation technique. Quantitative morphological measurements were made for smooth muscle accumulation around terminal bronchioles and indices of alveolar formation. Minimizing IMV to 3 h led to significantly better (P < 0.05) baseline respiratory system mechanics and less reactivity to methacholine in the first 3 mo of chronological age (2 mo corrected age), significantly less (P < 0.05) accumulation of smooth muscle around peripheral resistance airways (terminal bronchioles), and significantly better (P < 0.05) alveolarization at the end of 5 mo corrected age compared with continuous IMV for 6 days. We conclude that limiting the duration of IMV following preterm birth of fetal lambs leads to better respiratory system mechanics and structural outcomes later in life.


Asunto(s)
Pulmón/fisiopatología , Respiración Artificial/métodos , Respiración , Insuficiencia Respiratoria/terapia , Animales , Animales Recién Nacidos , Femenino , Masculino , Embarazo , Ovinos
13.
Pediatr Res ; 90(5): 998-1008, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33603215

RESUMEN

BACKGROUND: The brain of chronically ventilated preterm human infants is vulnerable to collateral damage during invasive mechanical ventilation (IMV). Damage is manifest, in part, by learning and memory impairments, which are hippocampal functions. A molecular regulator of hippocampal development is insulin-like growth factor 1 (IGF1). A gentler ventilation strategy is noninvasive respiratory support (NRS). We tested the hypotheses that NRS leads to greater levels of IGF1 messenger RNA (mRNA) variants and distinct epigenetic profile along the IGF1 gene locus in the hippocampus compared to IMV. METHODS: Preterm lambs were managed by NRS or IMV for 3 or 21 days. Isolated hippocampi were analyzed for IGF1 mRNA levels and splice variants for promoter 1 (P1), P2, and IGF1A and 1B, DNA methylation in P1 region, and histone covalent modifications along the gene locus. RESULTS: NRS had significantly greater levels of IGF1 P1 (predominant transcript), and 1A and 1B mRNA variants compared to IMV at 3 or 21 days. NRS also led to more DNA methylation and greater occupancy of activating mark H3K4 trimethylation (H3K4me3), repressive mark H3K27me3, and elongation mark H3K36me3 compared to IMV. CONCLUSIONS: NRS leads to distinct IGF1 mRNA variant levels and epigenetic profile in the hippocampus compared to IMV. IMPACT: Our study shows that 3 or 21 days of NRS of preterm lambs leads to distinct IGF1 mRNA variant levels and epigenetic profile in the hippocampus compared to IMV. Preterm infant studies suggest that NRS leads to better neurodevelopmental outcomes later in life versus IMV. Also, duration of IMV is directly related to hippocampal damage; however, molecular players remain unknown. NRS, as a gentler mode of respiratory management of preterm neonates, may reduce damage to the immature hippocampus through an epigenetic mechanism.


Asunto(s)
Animales Recién Nacidos , Epigénesis Genética , Hipocampo/metabolismo , Respiración Artificial/métodos , Somatomedinas/metabolismo , Animales , Metilación de ADN , Femenino , Histonas/metabolismo , Masculino , Regiones Promotoras Genéticas , Ovinos , Somatomedinas/genética
14.
Anat Rec (Hoboken) ; 304(4): 803-817, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33015923

RESUMEN

Diffusion tensor imaging (DTI) is an MRI technique that can be used to map cardiomyocyte tracts and estimate local cardiomyocyte and sheetlet orientation within the heart. DTI measures diffusion distances of water molecules within the myocardium, where water diffusion generally occurs more freely along the long axis of cardiomyocytes and within the extracellular matrix, but is restricted by cell membranes such that transverse diffusion is limited. DTI can be undertaken in fixed hearts and it allows the three-dimensional mapping of the cardiac microarchitecture, including cardiomyocyte organization, within the whole heart. The objective of this study was to use DTI to compare the cardiac microarchitecture and cardiomyocyte organization in archived fixed left ventricles of lambs that were born either preterm (n = 5) or at term (n = 7), at a postnatal timepoint equivalent to about 6 years of age in children. Although the findings support the feasibility of retrospective DTI scanning of fixed hearts, several hearts were excluded from DTI analysis because of poor scan quality, such as ghosting artifacts. The preliminary findings from viable DTI scans (n = 3/group) suggest that the extracellular compartment is altered and that there is an immature microstructural phenotype early in postnatal life in the LV of lambs born preterm. Our findings support a potential time-efficient imaging role for DTI in detecting abnormal changes in the microstructure of fixed hearts of former-preterm neonates, although further investigation into factors that affect scan quality is required.


Asunto(s)
Corazón/diagnóstico por imagen , Miocardio/citología , Miocitos Cardíacos/citología , Animales , Imagen de Difusión Tensora , Estudios Retrospectivos , Ovinos
15.
Clin Anat ; 34(1): 2-4, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32808702

RESUMEN

Research within the anatomical sciences often relies on human cadaveric tissues. Without the good will of these donors who allow us to use their bodies to push forward our anatomical knowledge, most human anatomical research would come to a standstill. However, many research papers omit an acknowledgement to the donor cadavers or, as no current standardized versions exist, use language that is extremely varied. To remedy this problem, 20 editors-in-chiefs from 17 anatomical journals joined together to put together official recommendations that can be used by authors when acknowledging the donor cadavers used in their studies. The goal of these recommendations is to standardize the writing approach by which donors are acknowledged in anatomical studies that use human cadaveric tissues. Such sections in anatomical papers will not only rightfully thank those who made the donation but might also encourage, motivate, and inspire future individuals to make such gifts for the betterment of the anatomical sciences and patient care.


Asunto(s)
Anatomía/educación , Cadáver , Publicaciones Periódicas como Asunto , Obtención de Tejidos y Órganos , Investigación Biomédica , Disección , Humanos
16.
Am J Respir Cell Mol Biol ; 64(3): 318-330, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33264084

RESUMEN

Pulmonary angiogenesis is a key driver of alveolarization. Our prior studies showed that NF-κB promotes pulmonary angiogenesis during early alveolarization. However, the mechanisms regulating temporal-specific NF-κB activation in the pulmonary vasculature are unknown. To identify mechanisms that activate proangiogenic NF-κB signaling in the developing pulmonary vasculature, proteomic analysis of the lung secretome was performed using two-dimensional difference gel electrophoresis. NF-κB activation and angiogenic function was assessed in primary pulmonary endothelial cells (PECs) and TGFBI (transforming growth factor-ß-induced protein)-regulated genes identified using RNA sequencing. Alveolarization and pulmonary angiogenesis was assessed in wild-type and Tgfbi null mice exposed to normoxia or hyperoxia. Lung TGFBI expression was determined in premature lambs supported by invasive and noninvasive respiratory support. Secreted factors from the early alveolar, but not the late alveolar or adult lung, promoted proliferation and migration in quiescent, adult PECs. Proteomic analysis identified TGFBI as one protein highly expressed by the early alveolar lung that promoted PEC migration by activating NF-κB via αvß3 integrins. RNA sequencing identified Csf3 as a TGFBI-regulated gene that enhances nitric oxide production in PECs. Loss of TGFBI in mice exaggerated the impaired pulmonary angiogenesis induced by chronic hyperoxia, and TGFBI expression was disrupted in premature lambs with impaired alveolarization. Our studies identify TGFBI as a developmentally regulated protein that promotes NF-κB-mediated angiogenesis during early alveolarization by enhancing nitric oxide production. We speculate that dysregulation of TGFBI expression may contribute to diseases marked by impaired alveolar and vascular growth.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Pulmón/irrigación sanguínea , Pulmón/crecimiento & desarrollo , FN-kappa B/metabolismo , Neovascularización Fisiológica , Factor de Crecimiento Transformador beta/metabolismo , Animales , Animales Recién Nacidos , Movimiento Celular , Factores Estimulantes de Colonias/metabolismo , Células Endoteliales/metabolismo , Integrina alfaVbeta3/metabolismo , Ratones Endogámicos C57BL , Óxido Nítrico/biosíntesis , Nacimiento Prematuro , Alveolos Pulmonares/metabolismo , Ovinos
20.
Pediatr Pulmonol ; 55(10): 2762-2772, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32662946

RESUMEN

BACKGROUND: Dysregulated nitric oxide (NO) signaling contributes to chronic hypoxia (CH)-induced pulmonary hypertension (PH). NO signaling is improved and pulmonary vascular resistance (PVR) is reduced in CH piglets treated with the l-arginine-NO precursor, l-citrulline. We hypothesized that l-citrulline might cause structural changes in the pulmonary circulation that would contribute to the reduction in PVR and that the l-citrulline-induced structural changes would be accompanied by alterations in vascular endothelial growth factor (VEGF) signaling. METHODS: We evaluated small pulmonary arterial (PA) wall thickness, lung capillary density, and protein abundances of VEGF, VEGFR2, and phospho (p)-VEGFR2 in PA and peripheral lung samples of piglets raised in the lab in CH (10%-12% O2 ) from the day of life (DOL) 2 until DOL 11 to 12 or raised in room air (normoxia) by the vendor and studied on arrival to the lab on DOL 11 to 12. Some CH piglets were treated with oral l-citrulline (1-1.5 g/kg/d) starting on the third day of hypoxia. RESULTS: PA wall thickness was 32% less and lung capillary formation was nearly doubled in l-citrulline treated than untreated CH piglets. Both of these l-citrulline-induced structural changes in the pulmonary circulation were accompanied by altered amounts of VEGF protein but not by altered amounts of either VEGFR2 or p-VEGFR2 proteins. CONCLUSIONS: Alterations in the structure of the pulmonary circulation in CH piglets by l-citrulline are unlikely to be mediated by overall VEGF signaling. Nonetheless, l-citrulline- induced structural changes should reduce PVR and thereby contribute to the amelioration of CH-induced PH.


Asunto(s)
Citrulina/farmacología , Hipoxia/fisiopatología , Circulación Pulmonar/efectos de los fármacos , Animales , Animales Recién Nacidos , Capilares/efectos de los fármacos , Capilares/fisiología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/fisiología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiología , Porcinos , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...