Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712182

RESUMEN

Adult male mammals can provide infants with protection and enhance their access to resources. They can also pose a risk to infants, either directly through infanticide or other aggression, or indirectly by placing infants at increased risk of conspecific or heterospecific conflict. Both benefits and costs may be especially important for offspring born to mothers in poor condition. Here we present the most detailed analysis to date of the influence of adult non-human primate males on a wide range of infant behaviors, and a description of the predictors of individual infants' proximity to adult males. We show that the number of adult males near an infant predicts many infant behavioral traits, including aspects of the mother-infant relationship, infant activity budgets, and the frequency of social interactions with non-mothers. Infant exposure to adult males is statistically significantly repeatable over time (R = 0.16). This repeatability is partially explained by whether the infant's mother experienced early life adversity: offspring of high-adversity mothers spent time in close proximity to more males during the first months of life. Our results are consistent with the possibility that the effects of maternal early life adversity can be mitigated or magnified by relationships with adult males.

2.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712305

RESUMEN

In evolutionary ecology, two classes of explanations are frequently invoked to explain "early life effects" on adult outcomes. Developmental constraints (DC) explanations contend that costs of early adversity arise from limitations adversity places on optimal development. Adaptive response (AR) hypotheses propose that later life outcomes will be worse when early and adult environments are poorly "matched." Here, we use recently proposed mathematical definitions for these hypotheses and a quadratic-regression based approach to test the long-term consequences of variation in developmental environments on fertility in wild baboons. We evaluate whether low rainfall and/or dominance rank during development predict three female fertility measures in adulthood, and whether any observed relationships are consistent with DC and/or AR. Neither rainfall during development nor the difference between rainfall in development and adulthood predicted any fertility measures. Females who were low-ranking during development had an elevated risk of losing infants later in life, and greater change in rank between development and adulthood predicted greater risk of infant loss. However, both effects were statistically marginal and consistent with alternative explanations, including adult environmental quality effects. Consequently, our data do not provide compelling support for either of these common explanations for the evolution of early life effects.

3.
Geroscience ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693466

RESUMEN

Biological aging is near-ubiquitous in the animal kingdom, but its timing and pace vary between individuals and over lifespans. Prospective, individual-based studies of wild animals-especially non-human primates-help identify the social and environmental drivers of this variation by indicating the conditions and exposure windows that affect aging processes. However, measuring individual biological age in wild primates is challenging because several of the most promising methods require invasive sampling. Here, we leverage observational data on behavior and physiology, collected non-invasively from 319 wild female baboons across 2402 female-years of study, to develop a composite predictor of age: the non-invasive physiology and behavior (NPB) clock. We found that age predictions from the NPB clock explained 51% of the variation in females' known ages. Further, deviations from the clock's age predictions predicted female survival: females predicted to be older than their known ages had higher adult mortality. Finally, females who experienced harsh early-life conditions were predicted to be about 6 months older than those who grew up in more benign conditions. While the relationship between early adversity and NPB age is noisy, this estimate translates to a predicted 2-3 year reduction in mean adult lifespan in our model. A constraint of our clock is that it is tailored to data collection approaches implemented in our study population. However, many of the clock's components have analogs in other populations, suggesting that non-invasive data can provide broadly applicable insight into heterogeneity in biological age in natural populations.

4.
Proc Natl Acad Sci U S A ; 121(11): e2309469121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442181

RESUMEN

The early-life environment can profoundly shape the trajectory of an animal's life, even years or decades later. One mechanism proposed to contribute to these early-life effects is DNA methylation. However, the frequency and functional importance of DNA methylation in shaping early-life effects on adult outcomes is poorly understood, especially in natural populations. Here, we integrate prospectively collected data on fitness-associated variation in the early environment with DNA methylation estimates at 477,270 CpG sites in 256 wild baboons. We find highly heterogeneous relationships between the early-life environment and DNA methylation in adulthood: aspects of the environment linked to resource limitation (e.g., low-quality habitat, early-life drought) are associated with many more CpG sites than other types of environmental stressors (e.g., low maternal social status). Sites associated with early resource limitation are enriched in gene bodies and putative enhancers, suggesting they are functionally relevant. Indeed, by deploying a baboon-specific, massively parallel reporter assay, we show that a subset of windows containing these sites are capable of regulatory activity, and that, for 88% of early drought-associated sites in these regulatory windows, enhancer activity is DNA methylation-dependent. Together, our results support the idea that DNA methylation patterns contain a persistent signature of the early-life environment. However, they also indicate that not all environmental exposures leave an equivalent mark and suggest that socioenvironmental variation at the time of sampling is more likely to be functionally important. Thus, multiple mechanisms must converge to explain early-life effects on fitness-related traits.


Asunto(s)
Experiencias Adversas de la Infancia , Metilación de ADN , Animales , Motivos de Nucleótidos , Bioensayo , Papio/genética
5.
Horm Behav ; 161: 105505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38364455

RESUMEN

How female mammals adapt metabolically in response to environmental variation remains understudied in the wild, because direct measures of metabolic activity are difficult to obtain in wild populations. However, recent advances in the non-invasive measurement of fecal thyroid hormones, triiodothyronine (T3), an important regulator of metabolism, provide an opportunity to understand how female baboons living in the harsh Amboseli ecosystem in southern Kenya adapt to environmental variability and escape strict reproductive seasonality. Specifically, we assessed how a female's activity budget, diet, and concentrations of fecal T3 metabolites (mT3) changed over the course of the year and between years. We then tested which of several environmental variables (season, rainfall, and temperature) and behavioral variables (female activity budget and diet) best predicted mT3 concentrations. Finally, we determined if two important reproductive events - onset of ovarian cycling and conception of an offspring - were preceded by changes in female mT3 concentrations. We found female baboons' mT3 concentrations varied markedly across the year and between years as a function of environmental conditions. Further, changes in a female's behavior and diet only partially mediated the metabolic response to the environment. Finally, mT3 concentrations increased in the weeks prior to menarche and cycling resumption, regardless of the month or season in which cycling started. This pattern indicates that metabolic activation may be an indicator of reproductive readiness in female baboons as their energy balance is restored.


Asunto(s)
Heces , Papio , Estaciones del Año , Triyodotironina , Animales , Femenino , Papio/fisiología , Heces/química , Triyodotironina/sangre , Triyodotironina/metabolismo , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/sangre , Dieta/veterinaria , Reproducción/fisiología , Ambiente , Kenia
6.
Proc Biol Sci ; 290(2011): 20231597, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37964524

RESUMEN

Affiliative social bonds are linked to fitness components in many social mammals. However, despite their importance, little is known about how the tendency to form social bonds develops in young animals, or if the timing of development is heritable and thus can evolve. Using four decades of longitudinal observational data from a wild baboon population, we assessed the environmental determinants of an important social developmental milestone in baboons-the age at which a young animal first grooms a conspecific-and we assessed how the rates at which offspring groom their mothers develops during the juvenile period. We found that grooming development differs between the sexes: female infants groom at an earlier age and reach equal rates of grooming with their mother earlier than males. We also found that age at first grooming for both sexes is weakly heritable (h2 = 0.043, 95% CI: 0.002-0.110). These results show that sex differences in grooming emerge at a young age; that strong, equitable social relationships between mothers and daughters begin very early in life; and that age at first grooming is heritable and therefore can be shaped by natural selection.


Asunto(s)
Madres , Conducta Social , Humanos , Animales , Femenino , Masculino , Papio , Conducta Sexual , Caracteres Sexuales , Aseo Animal , Mamíferos
7.
Am Nat ; 202(4): 383-398, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792922

RESUMEN

AbstractOver the past 50 years, a wealth of testable, often conflicting hypotheses have been generated about the evolution of offspring sex ratio manipulation by mothers. Several of these hypotheses have received support in studies of invertebrates and some vertebrate taxa. However, their success in explaining sex ratios in mammalian taxa-especially in primates-has been mixed. Here, we assess the predictions of four different hypotheses about the evolution of biased offspring sex ratios in the baboons of the Amboseli basin in Kenya: the Trivers-Willard, female rank enhancement, local resource competition, and local resource enhancement hypotheses. Using the largest sample size ever analyzed in a primate population (n=1,372 offspring), we test the predictions of each hypothesis. Overall, we find no support for adaptive biasing of sex ratios. Offspring sex is not consistently related to maternal dominance rank or biased toward the dispersing sex, nor is it predicted by group size, population growth rates, or their interaction with maternal rank. Because our sample size confers power to detect even subtle biases in sex ratio, including modulation by environmental heterogeneity, these results suggest that adaptive biasing of offspring sex does not occur in this population.


Asunto(s)
Papio cynocephalus , Razón de Masculinidad , Animales , Femenino , Papio , Primates , Mamíferos
8.
Am J Biol Anthropol ; 182(3): 357-371, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37737520

RESUMEN

OBJECTIVES: In many taxa, adverse early-life environments are associated with reduced growth and smaller body size in adulthood. However, in wild primates, we know very little about whether, where, and to what degree trajectories are influenced by early adversity, or which types of early adversity matter most. Here, we use parallel-laser photogrammetry to assess inter-individual predictors of three measures of body size (leg length, forearm length, and shoulder-rump length) in a population of wild female baboons studied since birth. MATERIALS AND METHODS: Using >2000 photogrammetric measurements of 127 females, we present a cross-sectional growth curve of wild female baboons (Papio cynocephalus) from juvenescence through adulthood. We then test whether females exposed to several important sources of early-life adversity-drought, maternal loss, low maternal rank, or a cumulative measure of adversity-were smaller for their age than females who experienced less adversity. Using the "animal model," we also test whether body size is heritable in this study population. RESULTS: Prolonged early-life drought predicted shorter limbs but not shorter torsos (i.e., shoulder-rump lengths). Our other measures of early-life adversity did not predict variation in body size. Heritability estimates for body size measures were 36%-67%. Maternal effects accounted for 13%-17% of the variance in leg and forearm length, but no variance in torso length. DISCUSSION: Our results suggest that baboon limbs, but not torsos, grow plastically in response to maternal effects and energetic early-life stress. Our results also reveal considerable heritability for all three body size measures in this study population.

9.
J Agric Biol Environ Stat ; 28(2): 197-218, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37415781

RESUMEN

In animal behavior studies, a common goal is to investigate the causal pathways between an exposure and outcome, and a mediator that lies in between. Causal mediation analysis provides a principled approach for such studies. Although many applications involve longitudinal data, the existing causal mediation models are not directly applicable to settings where the mediators are measured on irregular time grids. In this paper, we propose a causal mediation model that accommodates longitudinal mediators on arbitrary time grids and survival outcomes simultaneously. We take a functional data analysis perspective and view longitudinal mediators as realizations of underlying smooth stochastic processes. We define causal estimands of direct and indirect effects accordingly and provide corresponding identification assumptions. We employ a functional principal component analysis approach to estimate the mediator process and propose a Cox hazard model for the survival outcome that flexibly adjusts the mediator process. We then derive a g-computation formula to express the causal estimands using the model coefficients. The proposed method is applied to a longitudinal data set from the Amboseli Baboon Research Project to investigate the causal relationships between early adversity, adult physiological stress responses, and survival among wild female baboons. We find that adversity experienced in early life has a significant direct effect on females' life expectancy and survival probability, but find little evidence that these effects were mediated by markers of the stress response in adulthood. We further developed a sensitivity analysis method to assess the impact of potential violation to the key assumption of sequential ignorability. Supplementary materials accompanying this paper appear on-line.

10.
Neurosci Biobehav Rev ; 152: 105282, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37321362

RESUMEN

Field studies of natural mammal populations present powerful opportunities to investigate the determinants of health and aging using fine-grained observations of known individuals across the life course. Here, we synthesize five decades of findings from one such study: the wild baboons of the Amboseli ecosystem in Kenya. First, we discuss the profound associations between early life adversity, adult social conditions, and key aging outcomes in this population, especially survival. Second, we review potential mediators of the relationship between early life adversity and survival in our population. Notably, our tests of two leading candidate mediators-social isolation and glucocorticoid levels-fail to identify a single, strong mediator of early life effects on adult survival. Instead, early adversity, social isolation, and glucocorticoids are independently linked to adult lifespans, suggesting considerable scope for mitigating the negative consequences of early life adversity. Third, we review our work on the evolutionary rationale for early life effects on mortality, which currently argues against clear predictive adaptive responses. Finally, we end by highlighting major themes emerging from the study of sociality, development, and aging in the Amboseli baboons, as well as important open questions for future work.


Asunto(s)
Ecosistema , Conducta Social , Animales , Humanos , Papio/fisiología , Longevidad , Envejecimiento , Mamíferos
11.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333311

RESUMEN

The early life environment can profoundly shape the trajectory of an animal's life, even years or decades later. One mechanism proposed to contribute to these early life effects is DNA methylation. However, the frequency and functional importance of DNA methylation in shaping early life effects on adult outcomes is poorly understood, especially in natural populations. Here, we integrate prospectively collected data on fitness-associated variation in the early environment with DNA methylation estimates at 477,270 CpG sites in 256 wild baboons. We find highly heterogeneous relationships between the early life environment and DNA methylation in adulthood: aspects of the environment linked to resource limitation (e.g., low-quality habitat, early life drought) are associated with many more CpG sites than other types of environmental stressors (e.g., low maternal social status). Sites associated with early resource limitation are enriched in gene bodies and putative enhancers, suggesting they are functionally relevant. Indeed, by deploying a baboon-specific, massively parallel reporter assay, we show that a subset of windows containing these sites are capable of regulatory activity, and that, for 88% of early drought-associated sites in these regulatory windows, enhancer activity is DNA methylation-dependent. Together, our results support the idea that DNA methylation patterns contain a persistent signature of the early life environment. However, they also indicate that not all environmental exposures leave an equivalent mark and suggest that socioenvironmental variation at the time of sampling is more likely to be functionally important. Thus, multiple mechanisms must converge to explain early life effects on fitness-related traits.

12.
Elife ; 122023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37158607

RESUMEN

Ecological relationships between bacteria mediate the services that gut microbiomes provide to their hosts. Knowing the overall direction and strength of these relationships is essential to learn how ecology scales up to affect microbiome assembly, dynamics, and host health. However, whether bacterial relationships are generalizable across hosts or personalized to individual hosts is debated. Here, we apply a robust, multinomial logistic-normal modeling framework to extensive time series data (5534 samples from 56 baboon hosts over 13 years) to infer thousands of correlations in bacterial abundance in individual baboons and test the degree to which bacterial abundance correlations are 'universal'. We also compare these patterns to two human data sets. We find that, most bacterial correlations are weak, negative, and universal across hosts, such that shared correlation patterns dominate over host-specific correlations by almost twofold. Further, taxon pairs that had inconsistent correlation signs (either positive or negative) in different hosts always had weak correlations within hosts. From the host perspective, host pairs with the most similar bacterial correlation patterns also had similar microbiome taxonomic compositions and tended to be genetic relatives. Compared to humans, universality in baboons was similar to that in human infants, and stronger than one data set from human adults. Bacterial families that showed universal correlations in human infants were often universal in baboons. Together, our work contributes new tools for analyzing the universality of bacterial associations across hosts, with implications for microbiome personalization, community assembly, and stability, and for designing microbiome interventions to improve host health.


Communities of bacteria living in the guts of humans and other animals perform essential services for their hosts such as digesting food, degrading toxins, or fighting viruses and other bacteria that cause disease. These services emerge from so-called 'ecological' relationships between different species of bacteria. One species, for example, may break down a molecule in human food into another compound that is, in turn, digested by another species into a small molecule that the human gut can absorb and use. The bacteria involved in such a process may become more or less common together in their host. In other situations, some bacteria may have opposing roles to each other, meaning that if one species becomes more abundant it may reduce the level of the other. However, it is not known if relationships between different bacteria are consistent across hosts (i.e., universal) or unique to each host (personalized). In other words, if a pair of bacteria increase and decrease in abundance together in one host, do they do the same in other hosts? Microbes often swap genes with each other to gain new traits; as each host harbors a distinctive set of gut microbes, it may be possible for microbial relationships to change depending on the bacterial species present in a specific environment. To investigate, Roche et al. studied the bacteria in thousands of samples of feces collected from 56 baboons over a 13-year period. These samples came from a long-term research project in Amboseli, Kenya which has been studying a population of wild baboons continuously since 1971. Roche et al. measured the abundance of hundreds of gut bacteria in the feces to understand the relationships between pairs. This revealed that connections between species were largely universal rather than personalized to each baboon. Furthermore, the pairs of bacteria with the strongest positive or negative associations had the most consistent relationships across the baboons. Microbial relationships that have strong effects on the microbiome's composition might therefore be especially universal. Further analyses measuring gut bacteria in human babies also found that relationships between pairs of bacteria were largely universal. Hence, individual species of bacteria may fill similar ecological roles in each host across humans and other primates, and perhaps also in other mammals. These findings suggest that it may be possible to leverage the ecological relationships between bacteria to develop universal therapies for human diseases associated with gut bacteria, such as inflammatory bowel disease or Clostridium difficile infection.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Humanos , Papio/genética , Bacterias/genética , ARN Ribosómico 16S/genética
13.
Sci Adv ; 9(20): eade7172, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37196090

RESUMEN

Adverse conditions in early life can have negative consequences for adult health and survival in humans and other animals. What variables mediate the relationship between early adversity and adult survival? Adult social environments represent one candidate: Early life adversity is linked to social adversity in adulthood, and social adversity in adulthood predicts survival outcomes. However, no study has prospectively linked early life adversity, adult social behavior, and adult survival to measure the extent to which adult social behavior mediates this relationship. We do so in a wild baboon population in Amboseli, Kenya. We find weak mediation and largely independent effects of early adversity and adult sociality on survival. Furthermore, strong social bonds and high social status in adulthood can buffer some negative effects of early adversity. These results support the idea that affiliative social behavior is subject to natural selection through its positive relationship with survival, and they highlight possible targets for intervention to improve human health and well-being.


Asunto(s)
Experiencias Adversas de la Infancia , Animales , Humanos , Adulto , Relaciones Interpersonales , Conducta Social , Medio Social , Papio
14.
Evolution ; 77(7): 1607-1621, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37094802

RESUMEN

Affiliative social behaviors are linked to fitness components in multiple species. However, the role of genetic variance in shaping such behaviors remains largely unknown, limiting our understanding of how affiliative behaviors can respond to natural selection. Here, we employed the "animal model" to estimate environmental and genetic sources of variance and covariance in grooming behavior in the well-studied Amboseli wild baboon population. We found that the tendency for a female baboon to groom others ("grooming given") is heritable (h2 = 0.22 ± 0.048), and that several environmental variables-including dominance rank and the availability of kin as grooming partners-contribute to variance in this grooming behavior. We also detected small but measurable variance due to the indirect genetic effect of partner identity on the amount of grooming given within dyadic grooming partnerships. The indirect and direct genetic effects for grooming given were positively correlated (r = 0.74 ± 0.09). Our results provide insight into the evolvability of affiliative behavior in wild animals, including the possibility for correlations between direct and indirect genetic effects to accelerate the response to selection. As such they provide novel information about the genetic architecture of social behavior in nature, with important implications for the evolution of cooperation and reciprocity.


Asunto(s)
Primates , Conducta Social , Animales , Femenino , Animales Salvajes , Aseo Animal/fisiología , Papio , Predominio Social
15.
Am J Biol Anthropol ; 180(4): 618-632, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38445762

RESUMEN

OBJECTIVES: Pregnancy failure represents a major fitness cost for any mammal, particularly those with slow life histories such as primates. Here, we quantified the risk of fetal loss in wild hybrid baboons, including genetic, ecological, and demographic sources of variance. We were particularly interested in testing the hypothesis that hybridization increases fetal loss rates. Such an effect would help explain how baboons may maintain genetic and phenotypic integrity despite interspecific gene flow. MATERIALS AND METHODS: We analyzed outcomes for 1020 pregnancies observed over 46 years in a natural yellow baboon-anubis baboon hybrid zone. Fetal losses and live births were scored based on records of female reproductive state and the appearance of live neonates. We modeled the probability of fetal loss as a function of a female's genetic ancestry (the proportion of her genome estimated to be descended from anubis [vs. yellow] ancestors), age, number of previous fetal losses, dominance rank, group size, climate, and habitat quality using binomial mixed effects models. RESULTS: Female genetic ancestry did not predict fetal loss. Instead, the risk of fetal loss is elevated for very young and very old females. Fetal loss is most robustly predicted by ecological factors, including poor habitat quality prior to a home range shift and extreme heat during pregnancy. DISCUSSION: Our results suggest that gene flow between yellow and anubis baboons is not impeded by an increased risk of fetal loss for hybrid females. Instead, ecological conditions and female age are key determinants of this component of female reproductive success.


Asunto(s)
Feto , Atención Prenatal , Femenino , Animales , Embarazo , Humanos , Papio , Papio anubis/genética , Papio cynocephalus/genética , Nacimiento Vivo , Mamíferos
16.
17.
Nat Ecol Evol ; 6(11): 1766-1776, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36163259

RESUMEN

The ultimate payoff of behaviours depends not only on their direct impact on an individual, but also on the impact on their relatives. Local relatedness-the average relatedness of an individual to their social environment-therefore has profound effects on social and life history evolution. Recent work has begun to show that local relatedness has the potential to change systematically over an individual's lifetime, a process called kinship dynamics. However, it is unclear how general these kinship dynamics are, whether they are predictable in real systems and their effects on behaviour and life history evolution. In this study, we combine modelling with data from real systems to explore the extent and impact of kinship dynamics. We use data from seven group-living mammals with diverse social and mating systems to demonstrate not only that kinship dynamics occur in animal systems, but also that the direction and magnitude of kinship dynamics can be accurately predicted using a simple model. We use a theoretical model to demonstrate that kinship dynamics can profoundly affect lifetime patterns of behaviour and can drive sex differences in helping and harming behaviour across the lifespan in social species. Taken together, this work demonstrates that kinship dynamics are likely to be a fundamental dimension of social evolution, especially when considering age-linked changes and sex differences in behaviour and life history.


Asunto(s)
Mamíferos , Conducta Social , Animales , Femenino , Masculino , Reproducción , Longevidad
18.
Science ; 377(6606): 635-641, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926022

RESUMEN

Genetic admixture is central to primate evolution. We combined 50 years of field observations of immigration and group demography with genomic data from ~9 generations of hybrid baboons to investigate the consequences of admixture in the wild. Despite no obvious fitness costs to hybrids, we found signatures of selection against admixture similar to those described for archaic hominins. These patterns were concentrated near genes where ancestry is strongly associated with gene expression. Our analyses also show that introgression is partially predictable across the genome. This study demonstrates the value of integrating genomic and field data for revealing how "genomic signatures of selection" (e.g., reduced introgression in low-recombination regions) manifest in nature; moreover, it underscores the importance of other primates as living models for human evolution.


Asunto(s)
Hibridación Genética , Papio , Selección Genética , Animales , Genoma , Papio/genética
19.
Nat Ecol Evol ; 6(7): 955-964, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654895

RESUMEN

Human gut microbial dynamics are highly individualized, making it challenging to link microbiota to health and to design universal microbiome therapies. This individuality is typically attributed to variation in host genetics, diets, environments and medications but it could also emerge from fundamental ecological forces that shape microbiota more generally. Here, we leverage extensive gut microbial time series from wild baboons-hosts who experience little interindividual dietary and environmental heterogeneity-to test whether gut microbial dynamics are synchronized across hosts or largely idiosyncratic. Despite their shared lifestyles, baboon microbiota were only weakly synchronized. The strongest synchrony occurred among baboons living in the same social group, probably because group members range over the same habitat and simultaneously encounter the same sources of food and water. However, this synchrony was modest compared to each host's personalized dynamics. In support, host-specific factors, especially host identity, explained, on average, more than three times the deviance in longitudinal dynamics compared to factors shared with social group members and ten times the deviance of factors shared across the host population. These results contribute to mounting evidence that highly idiosyncratic gut microbiomes are not an artefact of modern human environments and that synchronizing forces in the gut microbiome (for example, shared environments, diets and microbial dispersal) are not strong enough to overwhelm key drivers of microbiome personalization, such as host genetics, priority effects, horizontal gene transfer and functional redundancy.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Dieta , Microbioma Gastrointestinal/genética , Humanos , Papio
20.
Proc Natl Acad Sci U S A ; 119(20): e2117669119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35533284

RESUMEN

Age-related changes in fertility have increasingly been documented in wild animal populations: In many species the youngest and oldest reproducers are disadvantaged relative to prime adults. How do these effects evolve, and what explains their diversity across species? Tackling this question requires detailed data on patterns of age-related reproductive performance in multiple animal species. Here, we compare patterns and consequences of age-related changes in female reproductive performance in seven primate populations that have been subjects of long-term continuous study for 29 to 57 y. We document evidence of age effects on fertility and on offspring performance in most, but not all, of these primate species. Specifically, females of six species showed longer interbirth intervals in the oldest age classes, youngest age classes, or both, and the oldest females also showed relatively fewer completed interbirth intervals. In addition, five species showed markedly lower survival among offspring born to the oldest mothers, and two species showed reduced survival for offspring born to both the youngest and the oldest mothers. In contrast, we found mixed evidence that maternal age affects the age at which daughters first reproduce: Only in muriquis and to some extent in chimpanzees, the only two species with female-biased dispersal, did relatively young mothers produce daughters that tended to have earlier first reproduction. Our findings demonstrate shared patterns as well as contrasts in age-related changes in female fertility across species of nonhuman primates and highlight species-specific behavior and life-history patterns as possible explanations for species-level differences.


Asunto(s)
Primates , Reproducción , Envejecimiento , Animales , Femenino , Fertilidad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...