Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Crohns Colitis ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708959

RESUMEN

BACKGROUND AND AIMS: To investigate if treatment with non-pooled multi-donor faecal microbiota transplantation (FMT) for four weeks was superior to placebo to induce clinical remission in patients with chronic pouchitis. METHODS: The study was a randomised double-blinded placebo-controlled study with a 4-week intervention period and 12-month follow-up. Eligible patients with chronic pouchitis were recruited from five Danish hospitals. Participants were randomised to non-pooled multi-donor FMT derived from four faecal donors, or placebo. Treatment was delivered daily by enema for two weeks followed by every second day for two weeks. Disease severity was accessed at inclusion and 30-day follow-up, using the Pouchitis Disease Activity Index (PDAI); PDAI <7 was considered equivalent to clinical remission. Faecal samples from participants and donors were analysed by shotgun metagenomic sequencing. RESULTS: Inclusion was stopped after inclusion of 30 participants who were randomised 1:1 for treatment with FMT or placebo. There was no difference in participants achieving clinical remission between the two groups at 30-day follow-up, relative risk 1.0 (95%CI(0.55;1.81)). Treatment with FMT resulted in a clinically relevant increase in adverse events compared to placebo, incidence rate ratio 1.67 (95%CI(1.10;2.52)); no serious adverse events within either group. Faecal microbiota transplantation statistically significantly increased the similarity of participant faecal microbiome to the faecal donor microbiome at 30-days follow-up (p=0.01), which was not seen after placebo. CONCLUSIONS: Non-pooled multi-donor FMT was comparable to placebo in inducing clinical remission in patients with chronic pouchitis but showed a clinically relevant increase in adverse events compared to placebo.

2.
PLoS One ; 19(4): e0301446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573983

RESUMEN

Reductions in sequencing costs have enabled widespread use of shotgun metagenomics and amplicon sequencing, which have drastically improved our understanding of the microbial world. However, large sequencing projects are now hampered by the cost of library preparation and low sample throughput, comparatively to the actual sequencing costs. Here, we benchmarked three high-throughput DNA extraction methods: ZymoBIOMICS™ 96 MagBead DNA Kit, MP BiomedicalsTM FastDNATM-96 Soil Microbe DNA Kit, and DNeasy® 96 PowerSoil® Pro QIAcube® HT Kit. The DNA extractions were evaluated based on length, quality, quantity, and the observed microbial community across five diverse soil types. DNA extraction of all soil types was successful for all kits, however DNeasy® 96 PowerSoil® Pro QIAcube® HT Kit excelled across all performance parameters. We further used the nanoliter dispensing system I.DOT One to miniaturize Illumina amplicon and metagenomic library preparation volumes by a factor of 5 and 10, respectively, with no significant impact on the observed microbial communities. With these protocols, DNA extraction, metagenomic, or amplicon library preparation for one 96-well plate are approx. 3, 5, and 6 hours, respectively. Furthermore, the miniaturization of amplicon and metagenome library preparation reduces the chemical and plastic costs from 5.0 to 3.6 and 59 to 7.3 USD pr. sample. This enhanced efficiency and cost-effectiveness will enable researchers to undertake studies with greater sample sizes and diversity, thereby providing a richer, more detailed view of microbial communities and their dynamics.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Análisis Costo-Beneficio , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , ADN , Suelo , Metagenómica/métodos
4.
Nat Biotechnol ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500913

RESUMEN

Studies using 16S rRNA and shotgun metagenomics typically yield different results, usually attributed to PCR amplification biases. We introduce Greengenes2, a reference tree that unifies genomic and 16S rRNA databases in a consistent, integrated resource. By inserting sequences into a whole-genome phylogeny, we show that 16S rRNA and shotgun metagenomic data generated from the same samples agree in principal coordinates space, taxonomy and phenotype effect size when analyzed with the same tree.

5.
ISME J ; 17(8): 1208-1223, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37188915

RESUMEN

Marine sponges are critical components of marine benthic fauna assemblages, where their filter-feeding and reef-building capabilities provide bentho-pelagic coupling and crucial habitat. As potentially the oldest representation of a metazoan-microbe symbiosis, they also harbor dense, diverse, and species-specific communities of microbes, which are increasingly recognized for their contributions to dissolved organic matter (DOM) processing. Recent omics-based studies of marine sponge microbiomes have proposed numerous pathways of dissolved metabolite exchange between the host and symbionts within the context of the surrounding environment, but few studies have sought to experimentally interrogate these pathways. By using a combination of metaproteogenomics and laboratory incubations coupled with isotope-based functional assays, we showed that the dominant gammaproteobacterial symbiont, 'Candidatus Taurinisymbion ianthellae', residing in the marine sponge, Ianthella basta, expresses a pathway for the import and dissimilation of taurine, a ubiquitously occurring sulfonate metabolite in marine sponges. 'Candidatus Taurinisymbion ianthellae' incorporates taurine-derived carbon and nitrogen while, at the same time, oxidizing the dissimilated sulfite into sulfate for export. Furthermore, we found that taurine-derived ammonia is exported by the symbiont for immediate oxidation by the dominant ammonia-oxidizing thaumarchaeal symbiont, 'Candidatus Nitrosospongia ianthellae'. Metaproteogenomic analyses also suggest that 'Candidatus Taurinisymbion ianthellae' imports DMSP and possesses both pathways for DMSP demethylation and cleavage, enabling it to use this compound as a carbon and sulfur source for biomass, as well as for energy conservation. These results highlight the important role of biogenic sulfur compounds in the interplay between Ianthella basta and its microbial symbionts.


Asunto(s)
Poríferos , Animales , Poríferos/microbiología , Taurina , Amoníaco , Carbono , Simbiosis , Filogenia
6.
Water Res ; 236: 119919, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37031530

RESUMEN

The partial nitritation/anammox process is a popular process for sidestream nitrogen removal, but the process is sensitive to disturbances and requires extensive surveillance and monitoring for optimal performance. We followed two parallel sidestream full-scale deammonification reactors treating digester centrate for a year with high time-resolution of both online sensor data and microbial community as measured by Nanopore DNA sequencing. DNA surveillance revealed system disturbances and allowed for detection of process and equipment upsets, and it facilitated remediating operational actions. Surveillance of anammox bacteria (Ca. Brocadia) revealed unexpected variations, and the composition and dynamics of the flanking community indicated causes for occasional process disturbances with poor nitrogen removal. Monitoring the ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) could potentially allow reactor operation with increased dissolved oxygen (DO), yielding higher ammonia conversion while keeping NOB in control. The use of fast and frequent DNA sequencing (sampling 3-5 times a week, analysed once per week) was an important supplement, and in many cases superior, to the online sensor data for process surveillance, understanding and control.


Asunto(s)
Compuestos de Amonio , Microbiota , Amoníaco , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Oxidación-Reducción , Bacterias/genética , Nitrógeno , Nitritos
8.
ISME J ; 17(4): 561-569, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36697964

RESUMEN

Cable bacteria of the Desulfobulbaceae family are centimeter-long filamentous bacteria, which are capable of conducting long-distance electron transfer. Currently, all cable bacteria are classified into two candidate genera: Candidatus Electronema, typically found in freshwater environments, and Candidatus Electrothrix, typically found in saltwater environments. This taxonomic framework is based on both 16S rRNA gene sequences and metagenome-assembled genome (MAG) phylogenies. However, most of the currently available MAGs are highly fragmented, incomplete, and thus likely miss key genes essential for deciphering the physiology of cable bacteria. Also, a closed, circular genome of cable bacteria has not been published yet. To address this, we performed Nanopore long-read and Illumina short-read shotgun sequencing of selected environmental samples and a single-strain enrichment of Ca. Electronema aureum. We recovered multiple cable bacteria MAGs, including two circular and one single-contig. Phylogenomic analysis, also confirmed by 16S rRNA gene-based phylogeny, classified one circular MAG and the single-contig MAG as novel species of cable bacteria, which we propose to name Ca. Electronema halotolerans and Ca. Electrothrix laxa, respectively. The Ca. Electronema halotolerans, despite belonging to the previously recognized freshwater genus of cable bacteria, was retrieved from brackish-water sediment. Metabolic predictions showed several adaptations to a high salinity environment, similar to the "saltwater" Ca. Electrothrix species, indicating how Ca. Electronema halotolerans may be the evolutionary link between marine and freshwater cable bacteria lineages.


Asunto(s)
Bacterias , Sedimentos Geológicos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Sedimentos Geológicos/microbiología , Transporte de Electrón , Bacterias/genética , Bacterias/metabolismo , Filogenia , Agua Dulce/microbiología
9.
J Virol Methods ; 312: 114648, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36368344

RESUMEN

In 2020, the novel coronavirus, SARS-CoV-2, caused a pandemic, which is still raging at the time of writing this. Here, we present results from SpikeSeq, the first published Sanger sequencing-based method for the detection of Variants of Concern (VOC) and key mutations, using a 1 kb amplicon from the recognized ARTIC Network primers. The proposed setup relies entirely on materials and methods already in use in diagnostic RT-qPCR labs and on existing commercial infrastructure offering sequencing services. For data analysis, we provide an automated, open source, and browser-based mutation calling software (https://github.com/kblin/covid-spike-classification, https://ssi.biolib.com/covid-spike-classification). We validated the setup on 195 SARS-CoV-2 positive samples, and we were able to profile 85% of RT-qPCR positive samples, where the last 15% largely stemmed from samples with low viral count. We compared the SpikeSeq results to WGS results. SpikeSeq has been used as the primary variant identification tool on > 10.000 SARS-CoV-2 positive clinical samples during 2021. At approximately 4€ per sample in material cost, minimal hands-on time, little data handling, and a short turnaround time, the setup is simple enough to be implemented in any SARS-CoV-2 RT-qPCR diagnostic lab. Our protocol provides results that can be used to choose antibodies in a clinical setting and for the tracking and surveillance of all positive samples for new variants and known ones such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) Delta (B.1.617.2), Omicron BA.1(B.1.1.529), BA.2, BA.4/5, BA.2.75.x, and many more, as of October 2022.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Glicoproteína de la Espiga del Coronavirus/genética , Mutación
10.
Nat Microbiol ; 7(12): 2128-2150, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36443458

RESUMEN

Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth's environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.


Asunto(s)
Microbiota , Animales , Microbiota/genética , Metagenoma , Metagenómica , Planeta Tierra , Suelo
11.
mSystems ; 7(6): e0063222, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36445112

RESUMEN

Microorganisms produce a wide variety of secondary/specialized metabolites (SMs), the majority of which are yet to be discovered. These natural products play multiple roles in microbiomes and are important for microbial competition, communication, and success in the environment. SMs have been our major source of antibiotics and are used in a range of biotechnological applications. In silico mining for biosynthetic gene clusters (BGCs) encoding the production of SMs is commonly used to assess the genetic potential of organisms. However, as BGCs span tens to over 200 kb, identifying complete BGCs requires genome data that has minimal assembly gaps within the BGCs, a prerequisite that was previously only met by individually sequenced genomes. Here, we assess the performance of the currently available genome mining platform antiSMASH on 1,080 high-quality metagenome-assembled bacterial genomes (HQ MAGs) previously produced from wastewater treatment plants (WWTPs) using a combination of long-read (Oxford Nanopore) and short-read (Illumina) sequencing technologies. More than 4,200 different BGCs were identified, with 88% of these being complete. Sequence similarity clustering of the BGCs implies that the majority of this biosynthetic potential likely encodes novel compounds, and few BGCs are shared between genera. We identify BGCs in abundant and functionally relevant genera in WWTPs, suggesting a role of secondary metabolism in this ecosystem. We find that the assembly of HQ MAGs using long-read sequencing is vital to explore the genetic potential for SM production among the uncultured members of microbial communities. IMPORTANCE Cataloguing secondary metabolite (SM) potential using genome mining of metagenomic data has become the method of choice in bioprospecting for novel compounds. However, accurate biosynthetic gene cluster (BGC) detection requires unfragmented genomic assemblies, which have been technically difficult to obtain from metagenomes until very recently with new long-read technologies. Here, we determined the biosynthetic potential of activated sludge (AS), the microbial community used in resource recovery and wastewater treatment, by mining high-quality metagenome-assembled genomes generated from long-read data. We found over 4,000 BGCs, including BGCs in abundant process-critical bacteria, with no similarity to the BGCs of characterized products. We show how long-read MAGs are required to confidently assemble complete BGCs, and we determined that the AS BGCs from different studies have very little overlap, suggesting that AS is a rich source of biosynthetic potential and new bioactive compounds.


Asunto(s)
Metagenoma , Microbiota , Metagenoma/genética , Aguas del Alcantarillado , Familia de Multigenes/genética , Microbiota/genética , Genoma Bacteriano/genética
12.
Bioinformatics ; 38(19): 4481-4487, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35972375

RESUMEN

MOTIVATION: Despite recent advancements in sequencing technologies and assembly methods, obtaining high-quality microbial genomes from metagenomic samples is still not a trivial task. Current metagenomic binners do not take full advantage of assembly graphs and are not optimized for long-read assemblies. Deep graph learning algorithms have been proposed in other fields to deal with complex graph data structures. The graph structure generated during the assembly process could be integrated with contig features to obtain better bins with deep learning. RESULTS: We propose GraphMB, which uses graph neural networks to incorporate the assembly graph into the binning process. We test GraphMB on long-read datasets of different complexities, and compare the performance with other binners in terms of the number of High Quality (HQ) genome bins obtained. With our approach, we were able to obtain unique bins on all real datasets, and obtain more bins on most datasets. In particular, we obtained on average 17.5% more HQ bins when compared with state-of-the-art binners and 13.7% when aggregating the results of our binner with the others. These results indicate that a deep learning model can integrate contig-specific and graph-structure information to improve metagenomic binning. AVAILABILITY AND IMPLEMENTATION: GraphMB is available from https://github.com/MicrobialDarkMatter/GraphMB. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metagenoma , Metagenómica , Análisis de Secuencia de ADN/métodos , Metagenómica/métodos , Genoma Microbiano , Algoritmos
14.
Nat Methods ; 19(7): 823-826, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35789207

RESUMEN

Long-read Oxford Nanopore sequencing has democratized microbial genome sequencing and enables the recovery of highly contiguous microbial genomes from isolates or metagenomes. However, to obtain near-finished genomes it has been necessary to include short-read polishing to correct insertions and deletions derived from homopolymer regions. Here, we show that Oxford Nanopore R10.4 can be used to generate near-finished microbial genomes from isolates or metagenomes without short-read or reference polishing.


Asunto(s)
Metagenoma , Nanoporos , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
15.
Genome Med ; 14(1): 47, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35505393

RESUMEN

BACKGROUND: In early 2021, the SARS-CoV-2 lineage B.1.1.7 (Alpha variant) became dominant across large parts of the world. In Denmark, comprehensive and real-time test, contact-tracing, and sequencing efforts were applied to sustain epidemic control. Here, we use these data to investigate the transmissibility, introduction, and onward transmission of B.1.1.7 in Denmark. METHODS: We analyzed a comprehensive set of 60,178 SARS-CoV-2 genomes generated from high-throughput sequencing by the Danish COVID-19 Genome Consortium, representing 34% of all positive cases in the period 14 November 2020 to 7 February 2021. We calculated the transmissibility of B.1.1.7 relative to other lineages using Poisson regression. Including all 1976 high-quality B.1.1.7 genomes collected in the study period, we constructed a time-scaled phylogeny, which was coupled with detailed travel history and register data to outline the introduction and onward transmission of B.1.1.7 in Denmark. RESULTS: In a period with unchanged restrictions, we estimated an increased B.1.1.7 transmissibility of 58% (95% CI: [56%, 60%]) relative to other lineages. Epidemiological and phylogenetic analyses revealed that 37% of B.1.1.7 cases were related to the initial introduction in November 2020. The relative number of cases directly linked to introductions varied between 10 and 50% throughout the study period. CONCLUSIONS: Our findings corroborate early estimates of increased transmissibility of B.1.1.7. Both substantial early expansion when B.1.1.7 was still unmonitored and continuous foreign introductions contributed considerably to case numbers. Finally, our study highlights the benefit of balanced travel restrictions and self-isolation procedures coupled with comprehensive surveillance efforts, to sustain epidemic control in the face of emerging variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Dinamarca/epidemiología , Humanos , Filogenia , SARS-CoV-2/genética
16.
Nat Commun ; 13(1): 1908, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393411

RESUMEN

Microbial communities are responsible for biological wastewater treatment, but our knowledge of their diversity and function is still poor. Here, we sequence more than 5 million high-quality, full-length 16S rRNA gene sequences from 740 wastewater treatment plants (WWTPs) across the world and use the sequences to construct the 'MiDAS 4' database. MiDAS 4 is an amplicon sequence variant resolved, full-length 16S rRNA gene reference database with a comprehensive taxonomy from domain to species level for all sequences. We use an independent dataset (269 WWTPs) to show that MiDAS 4, compared to commonly used universal reference databases, provides a better coverage for WWTP bacteria and an improved rate of genus and species level classification. Taking advantage of MiDAS 4, we carry out an amplicon-based, global-scale microbial community profiling of activated sludge plants using two common sets of primers targeting regions of the 16S rRNA gene, revealing how environmental conditions and biogeography shape the activated sludge microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 966 genera and 1530 species that represent approximately 80% and 50% of the accumulated read abundance, respectively. Finally, we show that for well-studied functional guilds, such as nitrifiers or polyphosphate-accumulating organisms, the same genera are prevalent worldwide, with only a few abundant species in each genus.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Bacterias/genética , Genes de ARNr , Filogenia , ARN Ribosómico 16S/genética , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología
17.
ISME J ; 16(2): 606-610, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34465898

RESUMEN

The origin of the eukaryotic cell is a major open question in biology. Asgard archaea are the closest known prokaryotic relatives of eukaryotes, and their genomes encode various eukaryotic signature proteins, indicating some elements of cellular complexity prior to the emergence of the first eukaryotic cell. Yet, microscopic evidence to demonstrate the cellular structure of uncultivated Asgard archaea in the environment is thus far lacking. We used primer-free sequencing to retrieve 715 almost full-length Loki- and Heimdallarchaeota 16S rRNA sequences and designed novel oligonucleotide probes to visualize their cells in marine sediments (Aarhus Bay, Denmark) using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Super-resolution microscopy revealed 1-2 µm large, coccoid cells, sometimes occurring as aggregates. Remarkably, the DNA staining was spatially separated from ribosome-originated FISH signals by 50-280 nm. This suggests that the genomic material is condensed and spatially distinct in a particular location and could indicate compartmentalization or membrane invagination in Asgard archaeal cells.


Asunto(s)
Archaea , Ribosomas , Archaea/genética , Archaea/metabolismo , ADN , ADN de Archaea/genética , Genoma Arqueal , Hibridación Fluorescente in Situ , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ribosomas/genética
18.
Nat Commun ; 12(1): 7251, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903718

RESUMEN

New lineages of SARS-CoV-2 are of potential concern due to higher transmissibility, risk of severe outcomes, and/or escape from neutralizing antibodies. Lineage B.1.1.7 (the Alpha variant) became dominant in early 2021, but the association between transmissibility and risk factors, such as age of primary case and viral load remains poorly understood. Here, we used comprehensive administrative data from Denmark, comprising the full population (January 11 to February 7, 2021), to estimate household transmissibility. This study included 5,241 households with primary cases; 808 were infected with lineage B.1.1.7 and 4,433 with other lineages. Here, we report an attack rate of 38% in households with a primary case infected with B.1.1.7 and 27% in households with other lineages. Primary cases infected with B.1.1.7 had an increased transmissibility of 1.5-1.7 times that of primary cases infected with other lineages. The increased transmissibility of B.1.1.7 was multiplicative across age and viral load.


Asunto(s)
Factores de Edad , COVID-19/transmisión , SARS-CoV-2 , Carga Viral , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , Niño , Preescolar , Dinamarca/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven
20.
Appl Environ Microbiol ; 87(17): e0062621, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34132589

RESUMEN

Short-read, high-throughput sequencing (HTS) methods have yielded numerous important insights into microbial ecology and function. Yet, in many instances short-read HTS techniques are suboptimal, for example, by providing insufficient phylogenetic resolution or low integrity of assembled genomes. Single-molecule and synthetic long-read (SLR) HTS methods have successfully ameliorated these limitations. In addition, nanopore sequencing has generated a number of unique analysis opportunities, such as rapid molecular diagnostics and direct RNA sequencing, and both Pacific Biosciences (PacBio) and nanopore sequencing support detection of epigenetic modifications. Although initially suffering from relatively low sequence quality, recent advances have greatly improved the accuracy of long-read sequencing technologies. In spite of great technological progress in recent years, the long-read HTS methods (PacBio and nanopore sequencing) are still relatively costly, require large amounts of high-quality starting material, and commonly need specific solutions in various analysis steps. Despite these challenges, long-read sequencing technologies offer high-quality, cutting-edge alternatives for testing hypotheses about microbiome structure and functioning as well as assembly of eukaryote genomes from complex environmental DNA samples.


Asunto(s)
Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Microbiota , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...