Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-36497566

RESUMEN

Circadian rhythms are generated by a series of genes, collectively named clock genes, which act as a self-sustained internal 24 h timing system in the body. Many physiological processes, including metabolism and the endocrine system, are regulated by clock genes in coordination with environmental cues. Loss of the circadian rhythms has been reported to contribute to widespread obesity, particularly in the pediatric population, which is increasingly exposed to chronodisruptors in industrialized society. The aim of the present study was to evaluate the DNA methylation status of seven clock genes, namely clock, arntl, per1-3 and cry1-2, in a cohort of chronobiologically characterized obese adolescents (n: 45: F/M: 28/17; age ± SD: 15.8 ± 1.4 yrs; BMI SDS: 2.94 [2.76; 3.12]) hospitalized for a 3-week multidisciplinary body weight reduction program (BWRP), as well as a series of cardiometabolic outcomes and markers of hypothalamo-pituitary-adrenal (HPA) function. At the end of the intervention, an improvement in body composition was observed (decreases in BMI SDS and fat mass), as well as glucometabolic homeostasis (decreases in glucose, insulin, HOMA-IR and Hb1Ac), lipid profiling (decreases in total cholesterol, LDL-C, triglycerides and NEFA) and cardiovascular function (decreases in systolic and diastolic blood pressures and heart rate). Moreover, the BWRP reduced systemic inflammatory status (i.e., decrease in C-reactive protein) and HPA activity (i.e., decreases in plasma ACTH/cortisol and 24 h urinary-free cortisol excretion). Post-BWRP changes in the methylation levels of clock, cry2 and per2 genes occurred in the entire population, together with hypermethylation of clock and per3 genes in males and in subjects with metabolic syndrome. In contrast to the pre-BWRP data, at the end of the intervention, cardiometabolic parameters, such as fat mass, systolic and diastolic blood pressures, triglycerides and HDL-C, were associated with the methylation status of some clock genes. Finally, BWRP induced changes in clock genes that were associated with markers of HPA function. In conclusion, when administered to a chronodisrupted pediatric obese population, a short-term BWRP is capable of producing beneficial cardiometabolic effects, as well as an epigenetic remodeling of specific clock genes, suggesting the occurrence of a post-BWRP metabolic and endocrine chronoresynchronization, which might represent a "biomolecular" predictor of successful antiobesity intervention.


Asunto(s)
Obesidad Infantil , Programas de Reducción de Peso , Masculino , Humanos , Adolescente , Niño , Metilación de ADN , Obesidad Infantil/genética , Pérdida de Peso , Triglicéridos , Sistema Endocrino
3.
J Clin Med ; 11(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36012914

RESUMEN

Obesity and aging share common molecular and cellular mechanisms underlying the pathophysiology of cardiovascular diseases (CVD), which occur frequently in both conditions. DNA methylation (DNAm) age, a biomarker of the epigenetic clock, has been proposed as a more accurate predictor of biological aging than chronological age. A positive difference between an individual's chronological age and DNAm age is referred to as epigenetic age acceleration. The objective of the present study was to evaluate the effects of a 3-week in-hospital body weight reduction program (BWRP) on the epigenetic age acceleration, as well as on other cardiometabolic outcomes, in a cohort of 72 obese adults (F/M: 43/29; (chronological) age: 51.5 ± 14.5 yrs; BMI: 46.5 ± 6.3 kg/m2). At the end of the BWRP, when considering the entire population, BMI decreased, and changes in body composition were observed. The BWRP also produced beneficial metabolic effects as demonstrated by decreases in glucose, insulin, HOMA-IR, total cholesterol, and LDL cholesterol. A post-BWRP improvement in cardiovascular function was also evident (i.e., decreases in systolic and diastolic blood pressures and heart rate). The BWRP reduced some markers of systemic inflammation, particularly C-reactive protein (CRP). Finally, vascular age (VA) and Framingham risk score (FRS) were reduced after the BWRP. When considering the entire population, DNAm age and epigenetic age acceleration did not differ after the BWRP. However, when subdividing the population into two groups based on each subject's epigenetic age acceleration (i.e., ≤0 yrs or >0 yrs), the BWRP reduced the epigenetic age acceleration only in obese subjects with a value > 0 yrs (thus biologically older than expected). Among all the single demographic, lifestyle, biochemical, and clinical characteristics investigated, only some markers of systemic inflammation, such as CRP, were associated with the epigenetic age acceleration. Moreover, chronological age was correlated with DNAm age and VA; finally, there was a correlation between DNAm age and VA. In conclusion, a 3-week BWRP is capable of reducing the epigenetic age acceleration in obese adults, being the BWRP-induced rejuvenation evident in subjects with an epigenetic age acceleration > 0 yrs. Based on the BWRP-induced decrease in CRP levels, chronic systemic inflammation seems to play a role in mediating obesity-related epigenetic remodeling and biological aging. Thus, due to the strong association of CVD risk with the epigenetic clock and morbidity/mortality, any effort should be made to reduce the low-grade chronic inflammatory state in obesity.

4.
Nutrients ; 14(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35631263

RESUMEN

Maternal obesity is associated with inflammation and oxidative stress, strongly impacting the intrauterine environment with detrimental consequences for both mother and offspring. The saliva is a non-invasive biofluid reflecting both local and systemic health status. This observational study aimed to profile the epigenetic signature in the saliva of Obese (OB) and Normal-Weight (NW) pregnant women. Sixteen NW and sixteen OB Caucasian women with singleton spontaneous pregnancies were enrolled. microRNAs were quantified by the OpenArray Platform. The promoter region methylation of Suppressor of Cytokine Signaling 3 (SOCS3) and Transforming Growth Factor Beta 1 (TGF-Beta1) was assessed by pyrosequencing. There were 754 microRNAs evaluated: 20 microRNAs resulted in being differentially expressed between OB and NW. microRNA pathway enrichment analysis showed a significant association with the TGF-Beta signaling pathway (miTALOS) and with fatty acids biosynthesis/metabolism, lysine degradation, and ECM-receptor interaction pathways (DIANA-miRPath). Both SOCS3 and TGF-Beta1 were significantly down-methylated in OB vs. NW. These results help to clarify impaired mechanisms involved in obesity and pave the way for the understanding of specific damaged pathways. The characterization of the epigenetic profile in saliva of pregnant women can represent a promising tool for the identification of obesity-related altered mechanisms and of possible biomarkers for early diagnosis and treatment of pregnancy-adverse conditions.


Asunto(s)
Epigénesis Genética , MicroARNs , Obesidad , Complicaciones del Embarazo , Metilación de ADN , Femenino , Humanos , MicroARNs/genética , Obesidad/genética , Embarazo , Complicaciones del Embarazo/genética , Mujeres Embarazadas , Regiones Promotoras Genéticas , Saliva/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Factor de Crecimiento Transformador beta1/genética
5.
PLoS One ; 17(1): e0261591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35073322

RESUMEN

OBJECTIVE: To evaluate whether telomere length (TL), mitochondrial-DNA (mt-DNA) or epigenetic age estimators based on DNA methylation (DNAm) pattern could be considered reliable predictors of in-vitro-fertilization (IVF) success in terms of live birth rate. DESIGN: Prospective cohort study. SETTING: Infertility Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico. PATIENTS: 181 women aged 37-39 years who underwent IVF at a single-centre between January 2017 and December 2018. INTERVENTIONS: On the day of recruitment, blood samples were collected, and genomic DNA was isolated from white blood cells. TL, mt-DNA and DNAm assessment was performed using quantitative real-time polymerase chain reaction (qPCR). Biological age (DNAm age) was computed as the algorithm based on methylation pattern of five genes. Epigenetic age acceleration was estimated from the residuals of the linear model of epigenetic age regressed on chronological age. Long Interspersed Nuclear Elements (LINE)-1 methylation pattern was used as a surrogate for global DNA methylation. MAIN OUTCOME MEASURES: This study investigated whether peripheral TL, mt-DNA and DNAm could predict live birth in IVF cycles. RESULTS: TL, mt-DNA and LINE-1 methylation were not associated with IVF success. Conversely, DNAm age resulted significantly lower in women who had a live birth compared to women who did not (36.1 ± 4.2 and 37.3 ± 3.3 years, respectively, p = 0.04). For DNAm age, odds ratio (OR) for live birth per year of age was 0.90 (95%CI: 0.82-0.99, p = 0.036) after adjusting for FSH and antral follicle count (AFC) and 0.90 (95%CI: 0.82-0.99, p = 0.028) after adjusting also for number of oocytes retrieved. A significant association also emerged for epigenetic age acceleration after adjustments (OR = 0.91, 95%CI: 0.83-1.00, p = 0.048). CONCLUSION: DNAm age is associated with IVF success but the magnitude of this association is insufficient to claim a clinical use. However, our findings are promising and warrant further investigation. Assessment of biological age using different epigenetic clocks or focusing on different tissues may reveal new predictors of IVF success.


Asunto(s)
Metilación de ADN , ADN Mitocondrial/genética , Mitocondrias/genética , Homeostasis del Telómero , Adulto , Tasa de Natalidad , Epigénesis Genética , Femenino , Fertilización In Vitro , Humanos , Italia , Elementos de Nucleótido Esparcido Largo , Edad Materna , Embarazo , Índice de Embarazo , Estudios Prospectivos
6.
Metabolites ; 11(4)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805234

RESUMEN

Overweight and obesity have high prevalence worldwide and assessing the metabolomic profile is a useful approach to study their related metabolic processes. In this study, we assessed the metabolomic profile of 1391 subjects affected by overweight and obesity, enrolled in the frame of the SPHERE study, using a validated LC-MS/MS targeted metabolomic approach determining a total of 188 endogenous metabolites. Multivariable censored linear regression Tobit models, correcting for age, sex, and smoking habits, showed that 83 metabolites were significantly influenced by body mass index (BMI). Among compounds with the highest association, aromatic and branched chain amino acids (in particular tyrosine, valine, isoleucine, and phenylalanine) increased with the increment of BMI, while some glycerophospholipids decreased, in particular some lysophosphatidylcholines (as lysoPC a C18:2) and several acylalkylphosphatidylcholines (as PC ae C36:2, PC ae C34:3, PC ae C34:2, and PC ae C40:6). The results of this investigation show that several endogenous metabolites are influenced by BMI, confirming the evidence with the strength of a large number of subjects, highlighting differences among subjects with different classes of obesity and showing unreported associations between BMI and different phosphatidylcholines.

7.
BMJ Open ; 11(3): e046800, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762247

RESUMEN

OBJECTIVES: In Italy, the pandemic of COVID-19 resulted in congestion of hospitals and laboratories and probably determined an underestimation of the number of infected subjects, as the molecular diagnosis of SARS-CoV-2 infection was mainly performed on hospitalised patients. Therefore, limited data are available about the number of asymptomatic/paucisymptomatic subjects in the general population across time. To understand SARS-CoV-2 infection in the general population, we have developed a cross-sectional study (the 'UNIversity against CORoNavirus study') to investigate infection trends in asymptomatic/paucisymptomatic subjects in Milan (Italy), between March and June 2020. PARTICIPANTS: The study population included 2023 subjects asymptomatic at the enrolment. PRIMARY OUTCOME MEASURES: A nasal mid-turbinate swab for the detection of SARS-CoV-2 RNA and blood specimen for testing serum antibodies (immunoglobulin M (IgM) and IgG) were collected. RESULTS: Subjects showing positivity for the SARS-CoV-2 RNA and/or for anti-SARS-CoV-2 Ig is 237 (11.7%). Only 1.2% (n=25) of the total population had a positive nasal swab for SARS-CoV-2 and the large majority (21/25) of them were observed in March. A total of 226 subjects (11%) had IgM (n=19; 0.9%), IgG (n=155; 7.7%) or both (n=52; 2.6%) against SARS-CoV-2. Subjects with a present or past SARS-CoV-2 infection did not differ from other subjects as regards the number of cohabiting family members, travels, fever and upper and lower respiratory infection episodes. CONCLUSIONS: Results from the present study support the hypothesis that the actual spread of the virus in Lombardy was underestimated in the official records. However, as it is not known how long Ig persist, numbers should be taken cautiously.


Asunto(s)
Anticuerpos Antivirales/aislamiento & purificación , Prueba Serológica para COVID-19 , COVID-19/diagnóstico , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina M/aislamiento & purificación , ARN Viral/aislamiento & purificación , Adulto , COVID-19/sangre , Estudios Transversales , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , SARS-CoV-2
8.
Eur J Intern Med ; 78: 161-163, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32564906
9.
Int J Mol Sci ; 21(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349365

RESUMEN

Circadian rhythm disturbances have been consistently associated with the development of several diseases, particularly cardiovascular diseases (CVDs). A central clock in the brain maintains the daily rhythm in accordance with the external environment. At the molecular level, the clock is maintained by "clock genes", the regulation of which is mainly due to DNA methylation, a molecular mechanism of gene expression regulation, able to react to and be reprogrammed by environmental exposure such as exposure to particulate matter (PM). In 55 patients with a diagnosis of acute ischemic stroke, we showed that PM2.5 exposure experienced before the event influenced clock genes methylation (i.e., circadian locomotor output cycles protein kaput CLOCK, period 2 PER2, cryprochrome 1 CRY1, Neuronal PAS Domain Protein 2 NPAS2), possibly modulating the patient prognosis after the event, as cryptochrome 1 CRY1 and period 1 PER1 methylation levels were associated with the Rankin score. Moreover, if PM2.5 annual average was low, CRY1/CRY2 methylation levels were positively associated with the National Institutes of Health Stroke Scale (NIHSS) score, whereas they were negatively associated if PM2.5 exposure was high. Whether epigenetic changes in clock genes need to be considered as a prognostic marker of stroke or rather a causal agent in stroke development remains to be determined. Further studies are needed to determine the role of clock gene methylation in regulating the response to and recovery after a stroke event.


Asunto(s)
Proteínas CLOCK/genética , Metilación de ADN , Susceptibilidad a Enfermedades , Material Particulado/efectos adversos , Accidente Cerebrovascular/etiología , Anciano , Anciano de 80 o más Años , Biomarcadores , Personas con Discapacidad , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico , Evaluación de Síntomas
10.
Sci Rep ; 9(1): 6505, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31019206

RESUMEN

Regulation of gene expression can occur via epigenetic effects as mediated by DNA methylation. The potential for epigenetic effects to be transmitted across generations, thus modulating phenotypic variation and affecting ecological and evolutionary processes, is increasingly appreciated. However, the study of variation in epigenomes and inter-generational transmission of epigenetic alterations in wild populations is at its very infancy. We studied sex- and age-related variation in DNA methylation and parent-offspring resemblance in methylation profiles in the barn swallows. We focused on a class of highly conserved 'clock' genes (clock, cry1, per2, per3, timeless) relevant in the timing of activities of major ecological importance. In addition, we considerably expanded previous analyses on the relationship between methylation at clock genes and breeding date, a key fitness trait in barn swallows. We found positive assortative mating for methylation at one clock locus. Methylation varied between the nestling and the adult stage, and according to sex. Individuals with relatively high methylation as nestlings also had high methylation levels when adults. Extensive parent-nestling resemblance in methylation levels was observed. Occurrence of extra-pair fertilizations allowed to disclose evidence hinting at a prevalence of paternal germline or sperm quality effects over common environment effects in generating father-offspring resemblance in methylation. Finally, we found an association between methylation at the clock poly-Q region, but not at other loci, and breeding date. We thus provided evidence for sex-dependent variation and the first account of parent-offspring resemblance in methylation in any wild vertebrate. We also showed that epigenetics may influence phenotypic plasticity of timing of life cycle events, thus having a major impact on fitness.


Asunto(s)
Proteínas Aviares/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Metilación de ADN , Epigénesis Genética/genética , Migración Animal , Animales , Femenino , Expresión Génica , Patrón de Herencia , Masculino , Comportamiento de Nidificación , Reproducción/genética
11.
Environ Res ; 161: 97-103, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29102669

RESUMEN

AIMS: Air particulate matter (PM) is associated with increased cardiovascular morbidity and mortality. Altered autonomic functions play a key role in PM-induced cardiovascular disease. However, previous studies have not address the impact of PM on sympathetic and parasympathetic control of heart function, independently, and using controlled conditions, i.e., increasing titration of PM of known composition, in absence of other potential confounding factors. To fill this gap, here we used symbolic analysis that is capable of detecting non-mutual changes of the two autonomic branches, thus considering them as independent, and concentrations of PM as they could be measured at peak levels in Milan during a polluted winter day. METHODS AND RESULTS: In this randomized, cross-over study, we enrolled 12 healthy subjects who underwent two random sessions: inhalation of filtered air mixture or inhalation of filtered air containing particulate mixture (PM 10, PM 2.5, PM 1.0 and PM 0.5µm). ECG and respiration for autonomic analysis and blood sample for DNA Methylation were collected at baseline (T1), after air exposure (T2) and after 2h (T3). Spectral and symbolic analysis of heart rate variability (HRV) were performed for autonomic control of cardiac function, while alterations in DNA methylation of candidate genes were used to index pro-inflammatory modifications. In the PM expose group, autonomic analysis revealed a significant decrease of 2UV%, index of parasympathetic modulation (14% vs 9%, p = 0.0309), while DNA analysis showed a significant increase of interferon γ (IFN- γ) methylation, from T1 to T3. In a mixed model using T1, T2 and T3, fine and ultrafine PM fractions showed significant associations with IFN- γ methylation and parasympathetic modulation. CONCLUSIONS: Our study shows, for the first time, that in healthy subjects, acute exposure to PM affects parasympathetic control of heart function and it increases methylation of a pro-inflammatory gene (i.e. methylation of interferon γ). Thus, our study suggests that, even in absence of other co-factors and in otherwise healthy individuals, PM per se is sufficient to trigger parasympathetic dysautonomia, independently from changes in sympathetic control, and inflammation, in a dose-dependent manner.


Asunto(s)
Contaminantes Atmosféricos , Sistema Cardiovascular , Interferón gamma , Material Particulado , Contaminantes Atmosféricos/efectos adversos , Sistema Cardiovascular/efectos de los fármacos , Estudios Cruzados , Voluntarios Sanos , Frecuencia Cardíaca , Humanos , Exposición por Inhalación , Interferón gamma/efectos de los fármacos , Interferón gamma/metabolismo , Metilación , Tamaño de la Partícula , Material Particulado/efectos adversos
12.
Part Fibre Toxicol ; 14(1): 32, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28899404

RESUMEN

BACKGROUND: Exposure to particulate matter (PM) is associated with increased incidence of cardiovascular disease and increased coagulation, but the molecular mechanisms underlying these associations remain unknown. Obesity may increase susceptibility to the adverse effects of PM exposure, exacerbating the effects on cardiovascular diseases. Extracellular vesicles (EVs), which travel in body fluids and transfer microRNAs (miRNAs) between tissues, might play an important role in PM-induced cardiovascular risk. We sought to determine whether the levels of PM with an aerodynamic diameter ≤ 10 µm (PM10) are associated with changes in fibrinogen levels, EV release, and the miRNA content of EVs (EV-miRNAs), investigating 1630 overweight/obese subjects from the SPHERE Study. RESULTS: Short-term exposure to PM10 (Day before blood drawing) was associated with an increased release of EVs quantified by nanoparticle tracking analysis, especially EVs derived from monocyte/macrophage components (CD14+) and platelets (CD61+) which were characterized by flow cytometry. We first profiled miRNAs of 883 subjects by the QuantStudio™ 12 K Flex Real Time PCR System and the top 40 EV-miRNAs were validated through custom miRNA plates. Nine EV-miRNAs (let-7c-5p; miR-106a-5p; miR-143-3p; miR-185-5p; miR-218-5p; miR-331-3p; miR-642-5p; miR-652-3p; miR-99b-5p) were downregulated in response to PM10 exposure and exhibited putative roles in cardiovascular disease, as highlighted by integrated network analysis. PM10 exposure was significantly associated with elevated fibrinogen levels, and five of the nine downregulated EV-miRNAs were mediators between PM10 exposure and fibrinogen levels. CONCLUSIONS: Research on EVs opens a new path to the investigation of the adverse health effects of air pollution exposure. EVs have the potential to act both as markers of PM susceptibility and as potential molecular mechanism in the chain of events connecting PM exposure to increased coagulation, which is frequently linked to exposure and CVD development.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/sangre , Vesículas Extracelulares/efectos de los fármacos , MicroARNs/sangre , Obesidad/sangre , Material Particulado/toxicidad , Índice de Masa Corporal , Enfermedades Cardiovasculares/inducido químicamente , Estudios Transversales , Vesículas Extracelulares/metabolismo , Femenino , Citometría de Flujo , Humanos , Exposición por Inhalación/análisis , Modelos Lineales , Masculino , MicroARNs/genética , Persona de Mediana Edad , Análisis Multivariante , Obesidad/complicaciones , Tamaño de la Partícula
13.
Sci Rep ; 7: 45412, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28361883

RESUMEN

Individuals often considerably differ in the timing of their life-cycle events, with major consequences for individual fitness, and, ultimately, for population dynamics. Phenological variation can arise from genetic effects but also from epigenetic modifications in DNA expression and translation. Here, we tested if CpG methylation at the poly-Q and 5'-UTR loci of the photoperiodic Clock gene predicted migration and breeding phenology of long-distance migratory barn swallows (Hirundo rustica) that were tracked year-round using light-level geolocators. Increasing methylation at Clock poly-Q was associated with earlier spring departure from the African wintering area, arrival date at the European breeding site, and breeding date. Higher methylation levels also predicted increased breeding success. Thus, we showed for the first time in any species that CpG methylation at a candidate gene may affect phenology and breeding performance. Methylation at Clock may be a candidate mechanism mediating phenological responses of migratory birds to ongoing climate change.


Asunto(s)
Migración Animal , Proteínas CLOCK/genética , Epigénesis Genética , Fenotipo , Conducta Sexual Animal , Golondrinas/genética , Golondrinas/fisiología , Animales , Metilación de ADN
14.
Environ Res ; 152: 478-484, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27838013

RESUMEN

BACKGROUND: Overweight and obesity are becoming more widespread with alarming projections for the coming years. Obesity may increase susceptibility to the adverse effects of PM exposure, exacerbating the effects on cardiovascular diseases and altering the biomarkers of vascular inflammation. The associated biological mechanisms have not been fully understood yet; the common denominator in the pathogenesis of the co-morbidities of obesity is the presence of an active, low-grade inflammatory process. DNA methylation has been shown to regulate inflammatory pathways that are responsible for the development of cardiovascular diseases. OBJECTIVES: The aim of the study was to investigate, in a population of overweight/obese subjects, the effects of PM on blood DNA methylation in genes associated to inflammatory response. METHODS: Using bisulfite pyrosequencing, we measured DNA methylation in peripheral blood mononuclear cells from 186 overweighted/obese subjects. In particular, we quantified DNA methylation in a set of 3 candidate genes, including CD14, TLR4 and TNF-α, because of the important roles that these genes play in the inflammatory pathway. Personal exposure to PM10 was estimated for each subject based on the local PM10 concentrations, measured by monitoring stations at residential address. Repeated measure models were used to evaluate the association of PM10 with each genes, accounting for possible correlations among the genes that regulate the same inflammatory pathway. RESULTS: We found an inverse association between the daily PM10 exposure and the DNA methylation of inflammatory genes, measured in peripheral blood of healthy overweight/obese subjects. Considering different exposure time-windows, the effect on CD14 and TLR4 methylation was observed, respectively, in days 4-5-6, and days 6-7-8. TNF-α methylation was not associated to PM10. CONCLUSIONS: Our findings support a picture in which PM10 exposure and transcriptional regulation of inflammatory gene pathway in obese subjects are associated.


Asunto(s)
Metilación de ADN , Contaminantes Ambientales/toxicidad , Inflamación/epidemiología , Obesidad/epidemiología , Sobrepeso/epidemiología , Material Particulado/toxicidad , Adulto , Anciano , Análisis Químico de la Sangre , Contaminantes Ambientales/análisis , Femenino , Humanos , Inflamación/inducido químicamente , Italia/epidemiología , Masculino , Persona de Mediana Edad , Obesidad/inducido químicamente , Sobrepeso/inducido químicamente , Tamaño de la Partícula , Material Particulado/análisis
15.
Nature ; 541(7635): 81-86, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28002404

RESUMEN

Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10-7, range P = 9.2 × 10-8 to 6.0 × 10-46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10-6, range P = 5.5 × 10-6 to 6.1 × 10-35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 × 10-54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.


Asunto(s)
Adiposidad/genética , Índice de Masa Corporal , Metilación de ADN/genética , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , Epigenómica , Estudio de Asociación del Genoma Completo , Obesidad/genética , Tejido Adiposo/metabolismo , Pueblo Asiatico/genética , Sangre/metabolismo , Estudios de Cohortes , Diabetes Mellitus Tipo 2/complicaciones , Europa (Continente)/etnología , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , India/etnología , Masculino , Obesidad/sangre , Obesidad/complicaciones , Sobrepeso/sangre , Sobrepeso/complicaciones , Sobrepeso/genética , Población Blanca/genética
16.
Lancet Diabetes Endocrinol ; 3(7): 526-534, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26095709

RESUMEN

BACKGROUND: Indian Asians, who make up a quarter of the world's population, are at high risk of developing type 2 diabetes. We investigated whether DNA methylation is associated with future type 2 diabetes incidence in Indian Asians and whether differences in methylation patterns between Indian Asians and Europeans are associated with, and could be used to predict, differences in the magnitude of risk of developing type 2 diabetes. METHODS: We did a nested case-control study of DNA methylation in Indian Asians and Europeans with incident type 2 diabetes who were identified from the 8-year follow-up of 25 372 participants in the London Life Sciences Prospective Population (LOLIPOP) study. Patients were recruited between May 1, 2002, and Sept 12, 2008. We did epigenome-wide association analysis using samples from Indian Asians with incident type 2 diabetes and age-matched and sex-matched Indian Asian controls, followed by replication testing of top-ranking signals in Europeans. For both discovery and replication, DNA methylation was measured in the baseline blood sample, which was collected before the onset of type 2 diabetes. Epigenome-wide significance was set at p<1 × 10(-7). We compared methylation levels between Indian Asian and European controls without type 2 diabetes at baseline to estimate the potential contribution of DNA methylation to increased risk of future type 2 diabetes incidence among Indian Asians. FINDINGS: 1608 (11·9%) of 13 535 Indian Asians and 306 (4·3%) of 7066 Europeans developed type 2 diabetes over a mean of 8·5 years (SD 1·8) of follow-up. The age-adjusted and sex-adjusted incidence of type 2 diabetes was 3·1 times (95% CI 2·8-3·6; p<0·0001) higher among Indian Asians than among Europeans, and remained 2·5 times (2·1-2·9; p<0·0001) higher after adjustment for adiposity, physical activity, family history of type 2 diabetes, and baseline glycaemic measures. The mean absolute difference in methylation level between type 2 diabetes cases and controls ranged from 0·5% (SD 0·1) to 1·1% (0·2). Methylation markers at five loci were associated with future type 2 diabetes incidence; the relative risk per 1% increase in methylation was 1·09 (95% CI 1·07-1·11; p=1·3 × 10(-17)) for ABCG1, 0·94 (0·92-0·95; p=4·2 × 10(-11)) for PHOSPHO1, 0·94 (0·92-0·96; p=1·4 × 10(-9)) for SOCS3, 1·07 (1·04-1·09; p=2·1 × 10(-10)) for SREBF1, and 0·92 (0·90-0·94; p=1·2 × 10(-17)) for TXNIP. A methylation score combining results for the five loci was associated with future type 2 diabetes incidence (relative risk quartile 4 vs quartile 1 3·51, 95% CI 2·79-4·42; p=1·3 × 10(-26)), and was independent of established risk factors. Methylation score was higher among Indian Asians than Europeans (p=1 × 10(-34)). INTERPRETATION: DNA methylation might provide new insights into the pathways underlying type 2 diabetes and offer new opportunities for risk stratification and prevention of type 2 diabetes among Indian Asians. FUNDING: The European Union, the UK National Institute for Health Research, the Wellcome Trust, the UK Medical Research Council, Action on Hearing Loss, the UK Biotechnology and Biological Sciences Research Council, the Oak Foundation, the Economic and Social Research Council, Helmholtz Zentrum Munchen, the German Research Center for Environmental Health, the German Federal Ministry of Education and Research, the German Center for Diabetes Research, the Munich Center for Health Sciences, the Ministry of Science and Research of the State of North Rhine-Westphalia, and the German Federal Ministry of Health.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/genética , Pueblo Asiatico , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Epigénesis Genética , Femenino , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Población Blanca
17.
BMC Public Health ; 14: 1137, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25371091

RESUMEN

BACKGROUND: Despite epidemiological findings showing increased air pollution related cardiovascular diseases (CVD), the knowledge of the involved molecular mechanisms remains moderate or weak. Particulate matter (PM) produces a local strong inflammatory reaction in the pulmonary environment but there is no final evidence that PM physically enters and deposits in blood vessels. Extracellular vesicles (EVs) and their miRNA cargo might be the ideal candidate to mediate the effects of PM, since they could be potentially produced by the respiratory system, reach the systemic circulation and lead to the development of cardiovascular effects.The SPHERE ("Susceptibility to Particle Health Effects, miRNAs and Exosomes") project was granted by ERC-2011-StG 282413, to examine possible molecular mechanisms underlying the effects of PM exposure in relation to health outcomes. METHODS/DESIGN: The study population will include 2000 overweight (25 < BMI < 30 kg/cm2) or obese (BMI ≥ 30 kg/cm2) subjects presenting at the Center for Obesity and Work (Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy).Each subject donates blood, urine and hair samples. Extensive epidemiological and clinical data are collected. Exposure to PM is assigned to each subject using both daily PM10 concentration series from air quality monitors and pollutant levels estimated by the FARM (Flexible air Quality Regional Model) modelling system and elaborated by the Regional Environmental Protection Agency.The recruitment period started in September 2010 and will continue until 2015. At December 31, 2013 we recruited 1250 subjects, of whom 87% lived in the province of Milan.Primary study outcomes include cardiometabolic and respiratory health effects. The main molecular mechanism we are investigating focuses on EV-associated microRNAs. DISCUSSION: SPHERE is the first large study aimed to explore EVs as a novel potential mechanism of how air pollution exposure acts in a highly susceptible population. The rigorous study design, the availability of banked biological samples and the potential to integrate epidemiological, clinical and molecular data will also furnish a powerful base for investigating different complementary molecular mechanisms. Our findings, if confirmed, could lead to the identification of potentially reversible alterations that might be considered as possible targets for new diagnostic and therapeutic interventions.


Asunto(s)
Contaminación del Aire/efectos adversos , Enfermedades Cardiovasculares/etiología , Susceptibilidad a Enfermedades , Obesidad , Enfermedades Respiratorias/etiología , Contaminantes Atmosféricos/análisis , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/orina , Monitoreo del Ambiente , Exosomas/química , Femenino , Humanos , Italia , Masculino , MicroARNs/análisis , Persona de Mediana Edad , Modelos Teóricos , Enfermedades Respiratorias/sangre , Enfermedades Respiratorias/orina
18.
Nutrients ; 6(10): 4625-39, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25340371

RESUMEN

The aim of the present study was to evaluate the potential association between dietary nutrients and alterations in DNA methylation in a set of five candidate genes, including CD14, Et-1, iNOS, HERV-w and TNFα, in a population of overweight/obese subjects. We evaluated possible associations between gene methylation and clinical blood parameters, including total cholesterol (TC), low- and high-density lipoprotein cholesterol (LDL-C and HDL-C), triglyceride and homocysteine levels. We employed validated methods to assess anthropometric, clinical and dietary data, as well as pyrosequencing to evaluate DNA methylation of the five candidate genes in 165 overweight/obese subjects. There was no association between body mass index and DNA methylation of the five candidate genes in this group of subjects. Positive associations were observed between TNFα methylation and blood levels of LDL-C (ß = 0.447, p = 0.002), TC/HDL-C (ß = 0.467, p = 0.001) and LDL-C/HDL-C (ß = 0.445, p = 0.002), as well as between HERV-w methylation and dietary intakes of ß-carotene (ß = 0.088, p = 0.051) and carotenoids (ß = 0.083, p = 0.029). TNFα methylation showed negative associations with dietary intakes of cholesterol (ß = -0.278, p = 0.048), folic acid (ß = -0.339, p = 0.012), ß-carotene (ß = -0.332, p = 0.045), carotenoids (ß = -0.331, p = 0.015) and retinol (ß = -0.360, p = 0.008). These results suggest a complex relationship among nutrient intake, oxidative stress and DNA methylation.


Asunto(s)
Metilación de ADN , Inflamación/genética , Estado Nutricional/genética , Obesidad/genética , Obesidad/metabolismo , Adulto , Anciano , Índice de Masa Corporal , Carotenoides/sangre , Colesterol/sangre , HDL-Colesterol/sangre , Ingestión de Alimentos/genética , Endotelina-1/genética , Ingestión de Energía/genética , Femenino , Ácido Fólico/sangre , Productos del Gen env/genética , Humanos , Receptores de Lipopolisacáridos/genética , Lipoproteínas LDL/sangre , Masculino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo II/genética , Obesidad/sangre , Sobrepeso/genética , Proteínas Gestacionales/genética , Triglicéridos/sangre , Factor de Necrosis Tumoral alfa/genética , Vitamina A/sangre , beta Caroteno/sangre
19.
J Am Heart Assoc ; 2(3): e000212, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23782920

RESUMEN

BACKGROUND: Short-term exposures to fine (<2.5 µm aerodynamic diameter) ambient particulate-matter (PM) have been related with increased blood pressure (BP) in controlled-human exposure and community-based studies. However, whether coarse (2.5 to 10 µm) PM exposure increases BP is uncertain. Recent observational studies have linked PM exposures with blood DNA hypomethylation, an epigenetic alteration that activates inflammatory and vascular responses. No experimental evidence is available to confirm those observational data and demonstrate the relations between PM, hypomethylation, and BP. METHODS AND RESULTS: We conducted a cross-over trial of controlled-human exposure to concentrated ambient particles (CAPs). Fifteen healthy adult participants were exposed for 130 minutes to fine CAPs, coarse CAPs, or HEPA-filtered medical air (control) in randomized order with ≥2-week washout. Repetitive-element (Alu, long interspersed nuclear element-1 [LINE-1]) and candidate-gene (TLR4, IL-12, IL-6, iNOS) blood methylation, systolic and diastolic BP were measured pre- and postexposure. After adjustment for multiple comparisons, fine CAPs exposure lowered Alu methylation (ß-standardized=-0.74, adjusted-P=0.03); coarse CAPs exposure lowered TLR4 methylation (ß-standardized=-0.27, adjusted-P=0.04). Both fine and coarse CAPs determined significantly increased systolic BP (ß=2.53 mm Hg, P=0.001; ß=1.56 mm Hg, P=0.03, respectively) and nonsignificantly increased diastolic BP (ß=0.98 mm Hg, P=0.12; ß=0.82 mm Hg, P=0.11, respectively). Decreased Alu and TLR4 methylation was associated with higher postexposure DBP (ß-standardized=0.41, P=0.04; and ß-standardized=0.84, P=0.02; respectively). Decreased TLR4 methylation was associated with higher postexposure SBP (ß-standardized=1.45, P=0.01). CONCLUSIONS: Our findings provide novel evidence of effects of coarse PM on BP and confirm effects of fine PM. Our results provide the first experimental evidence of PM-induced DNA hypomethylation and its correlation to BP.


Asunto(s)
Presión Sanguínea , Metilación de ADN , Exposición a Riesgos Ambientales , Material Particulado/efectos adversos , Adolescente , Adulto , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Hipertensión/etiología , Masculino , Persona de Mediana Edad , Adulto Joven
20.
PLoS One ; 7(12): e50471, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23227177

RESUMEN

Chronic occupational exposure to benzene is associated with an increased risk of hematological malignancies such as acute myeloid leukemia (AML), but the underlying mechanisms are still unclear. The main objective of this study was to investigate the association between benzene exposure and DNA methylation, both in repeated elements and candidate genes, in a population of 158 Bulgarian petrochemical workers and 50 unexposed office workers. Exposure assessment included personal monitoring of airborne benzene at work and urinary biomarkers of benzene metabolism (S-phenylmercapturic acid [SPMA] and trans,trans-muconic acid [t,t-MA]) at the end of the work-shift. The median levels of airborne benzene, SPMA and t,t-MA in workers were 0.46 ppm, 15.5 µg/L and 711 µg/L respectively, and exposure levels were significantly lower in the controls. Repeated-element DNA methylation was measured in Alu and LINE-1, and gene-specific methylation in MAGE and p15. DNA methylation levels were not significantly different between exposed workers and controls (P>0.05). Both ordinary least squares (OLS) and beta-regression models were used to estimate benzene-methylation associations. Beta-regression showed better model specification, as reflected in improved coefficient of determination (pseudo R(2)) and Akaike's information criterion (AIC). In beta-regression, we found statistically significant reductions in LINE-1 (-0.15%, P<0.01) and p15 (-0.096%, P<0.01) mean methylation levels with each interquartile range (IQR) increase in SPMA. This study showed statistically significant but weak associations of LINE-1 and p15 hypomethylation with SPMA in Bulgarian petrochemical workers. We showed that beta-regression is more appropriate than OLS regression for fitting methylation data.


Asunto(s)
Benceno/toxicidad , Biomarcadores/orina , Industria Química , Metilación de ADN , Exposición Profesional , Bulgaria , Humanos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...