Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 151(3): 301-315, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31376155

RESUMEN

Allosteric modulators of metabotropic glutamate receptor 5 (mGlu5 ) are a promising therapeutic strategy for a number of neurological disorders. Multiple mGlu5 -positive allosteric modulator (PAM) chemotypes have been discovered that act as either pure PAMs or as PAM-agonists in recombinant and native cells. While these compounds have been tested in paradigms of receptor activation, their effects on receptor regulatory processes are largely unknown. In this study, acute desensitization of mGlu5 mediated intracellular calcium mobilization by structurally diverse mGlu5 orthosteric and allosteric ligands was assessed in human embryonic kidney 293 cells and primary murine neuronal cultures from both striatum and cortex. We aimed to determine the intrinsic efficacy and modulatory capacity of diverse mGlu5 PAMs [(R)-5-((3-fluorophenyl)ethynyl)-N-(3-hydroxy-3-methylbutan-2-yl)picolinamide (VU0424465), N-cyclobutyl-6-((3-fluorophenyl)ethynyl)picolinamide (VU0360172), 1-(4-(2,4-difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethanone (DPFE), ((4-fluorophenyl) (2-(phenoxymethyl)-6,7-dihydrooxazolo[5,4-c]pyridin-5(4H)-yl)methanone) (VU0409551), 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB)] on receptor desensitization and whether cellular context influences receptor regulatory processes. Only VU0424465 and VU0409551 induced desensitization alone in human embryonic kidney 293-mGlu5 cells, while all PAMs enhanced (S)-3,5-dihydroxyphenylglycine (DHPG)-induced desensitization. All mGlu5 PAMs induced receptor desensitization alone and enhanced DHPG-induced desensitization in striatal neurons. VU0424465 and VU0360172 were the only PAMs that induced desensitization alone in cortical neurons. With the exception of (CDPPB), PAMs enhanced DHPG-induced desensitization in cortical neurons. Moreover, differential apparent affinities, efficacies, and cooperativities with DHPG were observed for VU0360172, VU0409551, and VU0424465 when comparing receptor activation and desensitization in a cell type-dependent manner. These data indicate that biased mGlu5 allosteric modulator pharmacology extends to receptor regulatory processes in a tissue dependent manner, adding yet another layer of complexity to rational mGlu5 drug discovery.


Asunto(s)
Receptor del Glutamato Metabotropico 5/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Animales , Benzamidas/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Humanos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxazoles/farmacología , Ácidos Picolínicos/farmacología , Piridinas/farmacología , Receptor del Glutamato Metabotropico 5/metabolismo
2.
Neuropharmacology ; 149: 83-96, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30763654

RESUMEN

Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) have been proposed as potential therapies for various CNS disorders. These ligands bind to sites distinct from the orthosteric (or endogenous) ligand, often with improved subtype selectivity and spatio-temporal control over receptor responses. We recently revealed that mGlu5 allosteric agonists and positive allosteric modulators exhibit biased agonism and/or modulation. To establish whether negative allosteric modulators (NAMs) engender similar bias, we rigorously characterized the pharmacology of eight diverse mGlu5 NAMs. Radioligand inhibition binding studies revealed novel modes of interaction with mGlu5 for select NAMs, with biphasic or incomplete inhibition of the radiolabeled NAM, [3H]methoxy-PEPy. We assessed mGlu5-mediated intracellular Ca2+ (iCa2+) mobilization and inositol phosphate (IP1) accumulation in HEK293A cells stably expressing low levels of mGlu5 (HEK293A-rat mGlu5-low) and mouse embryonic cortical neurons. The apparent affinity of acetylenic NAMs, MPEP, MTEP and dipraglurant, was dependent on the signaling pathway measured, agonist used, and cell type (HEK293A-rat mGlu5-low versus mouse cortical neurons). In contrast, the acetylenic partial NAM, M-5MPEP, and structurally distinct NAMs (VU0366248, VU0366058, fenobam), had similar affinity estimates irrespective of the assay or cellular background. Biased modulation was evident for VU0366248 in mouse cortical neurons where it was a NAM for DHPG-mediated iCa2+ mobilization, but neutral with DHPG in IP1 accumulation assays. Overall, this study highlights the inherent complexity in mGlu5 NAM pharmacology that we hypothesize may influence interpretation when translating into preclinical models and beyond in the design and development of novel therapeutics for neuropsychiatric and neurological disorders.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Ligandos , Receptor del Glutamato Metabotropico 5/metabolismo , Animales , Calcio/metabolismo , Sistema Nervioso Central , Femenino , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Cinética , Ratones , Embarazo , Cultivo Primario de Células , Ratas
3.
Mol Pharmacol ; 93(5): 504-514, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29514854

RESUMEN

Numerous positive and negative allosteric modulators (PAMs and NAMs) of class C G protein-coupled receptors (GPCRs) have been developed as valuable preclinical pharmacologic tools and therapeutic agents. Although many class C GPCR allosteric modulators have undergone subtype selectivity screening, most assay paradigms have failed to perform rigorous pharmacologic assessment. Using mGlu5 as a representative class C GPCR, we tested the hypothesis that allosteric modulator selectivity was based on cooperativity rather than affinity. Specifically, we aimed to identify ligands that bound to mGlu5 but exhibited neutral cooperativity with mGlu5 agonists. We additionally evaluated the potential for these ligands to exhibit biased pharmacology. Radioligand binding, intracellular calcium (iCa2+) mobilization, and inositol monophosphate (IP1) accumulation assays were undertaken in human embryonic kidney cells expressing low levels of rat mGlu5 (HEK293A-mGlu5-low) for diverse allosteric chemotypes. Numerous "non-mGlu5" class C GPCR allosteric modulators incompletely displaced allosteric mGlu5 radioligand [3H]methoxy-PEPy binding, consistent with a negative allosteric interaction. Affinity estimates for CPCCOEt (mGlu1 ligand), PHCCC (mGlu4 ligand), GS39783 (GABAB ligand), AZ12216052 (mGlu8 ligand), and CGP7930 (GABAB ligand) at mGlu5 were within 10-fold of their target receptor. Most class C GPCR allosteric modulators had neutral cooperativity with both orthosteric and allosteric mGlu5 agonists in functional assays; however, NPS2143 (calcium-sensing receptor (CaSR) NAM), cinacalcet (CaSR PAM), CGP7930, and AZ12216052 were partial mGlu5 agonists for IP1 accumulation, but not iCa2+ mobilization. By using mGlu5 as a model class C GPCR, we find that for many class C GPCR allosteric modulators, subtype selectivity is driven by cooperativity and misinterpreted owing to unappreciated bias.


Asunto(s)
Receptor del Glutamato Metabotropico 5/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulación Alostérica , Animales , Calcio/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Femenino , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Ligandos , Ratones , Neuronas/metabolismo , Ensayo de Unión Radioligante , Ratas , Tritio
4.
Proc Natl Acad Sci U S A ; 115(10): E2419-E2428, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29453275

RESUMEN

Subtype-selective antagonists for muscarinic acetylcholine receptors (mAChRs) have long been elusive, owing to the highly conserved orthosteric binding site. However, allosteric sites of these receptors are less conserved, motivating the search for allosteric ligands that modulate agonists or antagonists to confer subtype selectivity. Accordingly, a 4.6 million-molecule library was docked against the structure of the prototypical M2 mAChR, seeking molecules that specifically stabilized antagonist binding. This led us to identify a positive allosteric modulator (PAM) that potentiated the antagonist N-methyl scopolamine (NMS). Structure-based optimization led to compound '628, which enhanced binding of NMS, and the drug scopolamine itself, with a cooperativity factor (α) of 5.5 and a KB of 1.1 µM, while sparing the endogenous agonist acetylcholine. NMR spectral changes determined for methionine residues reflected changes in the allosteric network. Moreover, '628 slowed the dissociation rate of NMS from the M2 mAChR by 50-fold, an effect not observed at the other four mAChR subtypes. The specific PAM effect of '628 on NMS antagonism was conserved in functional assays, including agonist stimulation of [35S]GTPγS binding and ERK 1/2 phosphorylation. Importantly, the selective allostery between '628 and NMS was retained in membranes from adult rat hypothalamus and in neonatal rat cardiomyocytes, supporting the physiological relevance of this PAM/antagonist approach. This study supports the feasibility of discovering PAMs that confer subtype selectivity to antagonists; molecules like '628 can convert an armamentarium of potent but nonselective GPCR antagonist drugs into subtype-selective reagents, thus reducing their off-target effects.


Asunto(s)
Agonistas Muscarínicos/química , Receptor Muscarínico M2/química , Regulación Alostérica , Sitio Alostérico , Animales , Humanos , Cinética , Ligandos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Agonistas Muscarínicos/metabolismo , Fosforilación , Unión Proteica , Ratas , Receptor Muscarínico M2/metabolismo
5.
J Med Chem ; 60(22): 9239-9250, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29094937

RESUMEN

Muscarinic receptor agonists are characterized by apparently strict restraints on their tertiary or quaternary amine and their distance to an ester or related center. On the basis of the active state crystal structure of the muscarinic M2 receptor in complex with iperoxo, we explored potential agonists that lacked the highly conserved functionalities of previously known ligands. Using structure-guided pharmacophore design followed by docking, we found two agonists (compounds 3 and 17), out of 19 docked and synthesized compounds, that fit the receptor well and were predicted to form a hydrogen-bond conserved among known agonists. Structural optimization led to compound 28, which was 4-fold more potent than its parent 3. Fortified by the discovery of this new scaffold, we sought a broader range of chemotypes by docking 2.2 million fragments, which revealed another three micromolar agonists unrelated either to 28 or known muscarinics. Even pockets as tightly defined and as deeply studied as that of the muscarinic reveal opportunities for the structure-based design and the discovery of new chemotypes.


Asunto(s)
Agonistas Muscarínicos/farmacología , Receptor Muscarínico M2/agonistas , Acetilcolina/metabolismo , Animales , Arrestina/metabolismo , Benzofuranos/síntesis química , Benzofuranos/química , Benzofuranos/farmacología , Células CHO , Carbacol/farmacología , Cricetulus , Diseño de Fármacos , Células HEK293 , Humanos , Isoxazoles/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Agonistas Muscarínicos/síntesis química , Agonistas Muscarínicos/química , N-Metilescopolamina/química , Compuestos de Amonio Cuaternario/síntesis química , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/química , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/química , Receptor Muscarínico M3/metabolismo , Receptores Nicotínicos/química , Tritio
6.
Brain Behav Immun ; 57: 106-115, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27321906

RESUMEN

Chronic stress accelerates metastasis - the main cause of death in cancer patients - through the activation of ß-adrenoceptors (ßARs). We have previously shown that ß2AR signaling in MDA-MB-231(HM) breast cancer cells, facilitates invadopodia formation and invasion in vitro. However, in the tumor microenvironment where many stromal cells also express ßAR, the role of ß2AR signaling in tumor cells in metastasis is unclear. Therefore, to investigate the contribution of ß2AR signaling in tumor cells to metastasis in vivo, we used RNA interference to generate MDA-MB-231(HM) breast cancer cells that are deficient in ß2AR. ß2AR knockdown in tumor cells reduced the proportion of cells with a mesenchymal-like morphology and, as expected, reduced tumor cell invasion in vitro. Conversely, overexpression of ß2AR in low metastatic MCF-7 breast cancer cells induced an invasive phenotype. Importantly, we found that knockdown of ß2AR in tumor cells significantly reduced the impact of stress on metastasis in vivo. These findings highlight a crucial role for ß2AR tumor cell signaling in the adverse effects of stress on metastasis, and indicate that it may be necessary to block ß2AR on tumor cells to fully control metastatic progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Línea Celular Tumoral/metabolismo , Metástasis de la Neoplasia , Receptores Adrenérgicos beta 2/metabolismo , Estrés Psicológico/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos
7.
Breast Cancer Res ; 17(1): 145, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26607426

RESUMEN

INTRODUCTION: For efficient metastatic dissemination, tumor cells form invadopodia to degrade and move through three-dimensional extracellular matrix. However, little is known about the conditions that favor invadopodia formation. Here, we investigated the effect of ß-adrenoceptor signaling - which allows cells to respond to stress neurotransmitters - on the formation of invadopodia and examined the effect on tumor cell invasion. METHODS: To characterize the molecular and cellular mechanisms of ß-adrenergic signaling on the invasive properties of breast cancer cells, we used functional cellular assays to quantify invadopodia formation and to evaluate cell invasion in two-dimensional and three-dimensional environments. The functional significance of ß-adrenergic regulation of invadopodia was investigated in an orthotopic mouse model of spontaneous breast cancer metastasis. RESULTS: ß-adrenoceptor activation increased the frequency of invadopodia-positive tumor cells and the number of invadopodia per cell. The effects were selectively mediated by the ß2-adrenoceptor subtype, which signaled through the canonical Src pathway to regulate invadopodia formation. Increased invadopodia occurred at the expense of focal adhesion formation, resulting in a switch to increased tumor cell invasion through three-dimensional extracellular matrix. ß2-adrenoceptor signaling increased invasion of tumor cells from explanted primary tumors through surrounding extracellular matrix, suggesting a possible mechanism for the observed increased spontaneous tumor cell dissemination in vivo. Selective antagonism of ß2-adrenoceptors blocked invadopodia formation, suggesting a pharmacological strategy to prevent tumor cell dissemination. CONCLUSION: These findings provide insight into conditions that control tumor cell invasion by identifying signaling through ß2-adrenoceptors as a regulator of invadopodia formation. These findings suggest novel pharmacological strategies for intervention, by using ß-blockers to target ß2-adrenoceptors to limit tumor cell dissemination and metastasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Extensiones de la Superficie Celular/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Adhesiones Focales/metabolismo , Humanos , Invasividad Neoplásica , Trasplante de Neoplasias , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...