Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; : e202400580, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016162

RESUMEN

In formulas employed for analysis of organic electronic devices, the relative dielectric constant value of the semiconductor organic films is often assumed rather than measured, even though it is a fundamental parameter for a correct interpretation. This is particularly true for ultrathin films made of discrete molecular layers. In this work, Spectroscopy Ellipsometry and Scanning Capacitance Microscopy were used to study thin films made of N,N'-bis(n-octyl)-x:y,dicyanoperylene-3,4:9,10-bis(dicarboximide). The relative dielectric constant presents a non-monotonic trend with thickness: it is equal to 2.1 for one molecular layer, saturating at 3.2 for increasing thickness. This maximum value, equivalent to the bulk one, occurs when the coverage is in between the third to the fourth layer. In this range, the growth switches from a Frank-Van der Merwe (2D growth) to a Volmer-Weber mode (3D growth); in addition, the molecular configuration assumes a bent/distorted geometry with respect to the initial edge-on one. These results establish a morphological dependence of the dielectric constant, especially in the vicinity of the substrate interface, that disappears at a certain distance from it.

2.
Materials (Basel) ; 17(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591448

RESUMEN

Star copolymer films were produced by using spin-coating, drop-casting, and casting deposition techniques, thus obtaining ultrathin and thick films, respectively. The morphology is generally flat, but it becomes substrate-dependent for ultrathin films where the planarization effect of films is not efficient. The indentation hardness of films was investigated by Force Volume Maps in both the air and liquid. In the air, ultrathin films are in the substrate-dominated zone and, thus, the elastic modulus E is overestimated, while E reaches its bulk value for drop-casted ultrathin and thick films. In liquid (water), E follows an exponential decay for all films with a minimum soaked time t0 of 0.37 and 2.65 h for ultrathin and drop-casted ultrathin and thick films, respectively. After this time, E saturates to a value on average 92% smaller than that measured in the air due to film swelling. Such results support the role of film morphology in the antimicrobial activity envisaged in the literature, suggesting also an additional role of film hardness.

3.
Materials (Basel) ; 17(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38541486

RESUMEN

Among solution-processable metal oxides, zinc oxide (ZnO) nanoparticle inks are widely used in inverted organic solar cells for the preparation, at relatively low temperatures (<120 °C), of highly efficient electron-transporting layers. There is, however, a recent interest to develop more sustainable and less impacting methods/strategies for the preparation of ZnO NPs with controlled properties and improved performance. To this end, we report here the synthesis and characterization of ZnO NPs obtained using alternative reaction solvents derived from renewable or recycled sources. In detail, we use (i) recycled methanol (r-MeOH) to close the loop and minimize wastes or (ii) bioethanol (b-EtOH) to prove the effectiveness of a bio-based solvent. The effect of r-MeOH and b-EtOH on the optical, morphological, and electronic properties of the resulting ZnO NPs, both in solution and thin-films, is investigated, discussed, and compared to an analogous reference material. Moreover, to validate the properties of the resulting materials, we have prepared PTB7:PC71BM-based solar cells containing the different ZnO NPs as a cathode interlayer. Power conversion efficiencies comparable to the reference system (≈7%) were obtained, validating the proposed alternative and more sustainable approach.

4.
Langmuir ; 39(35): 12430-12451, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37608587

RESUMEN

The physico-chemical properties of native oxide layers, spontaneously forming on crystalline Si wafers in air, can be strictly correlated to the dopant type and doping level. In particular, our investigations focused on oxide layers formed upon air exposure in a clean room after Si wafer production, with dopant concentration levels from ≈1013 to ≈1019 cm-3. In order to determine these correlations, we studied the surface, the oxide bulk, and its interface with Si. The surface was investigated using the contact angle, thermal desorption, and atomic force microscopy measurements which provided information on surface energy, cleanliness, and morphology, respectively. Thickness was measured with ellipsometry and chemical composition with X-ray photoemission spectroscopy. Electrostatic charges within the oxide layer and at the Si interface were studied with Kelvin probe microscopy. Some properties such as thickness, showed an abrupt change, while others, including silanol concentration and Si intermediate-oxidation states, presented maxima at a critical doping concentration of ≈2.1 × 1015 cm-3. Additionally, two electrostatic contributions were found to originate from silanols present on the surface and the net charge distributed within the oxide layer. Lastly, surface roughness was also found to depend upon dopant concentration, showing a minimum at the same critical dopant concentration. These findings were reproduced for oxide layers regrown in a clean room after chemical etching of the native ones.

5.
Ultramicroscopy ; 240: 113598, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35930930

RESUMEN

The morphology of sub-monolayer sexithiophene films has been investigated in situ and ex situ as a function of the substrate temperature of deposition. In this thickness range, monolayer terraces formed of edge-on molecules, i.e. nearly upright, are typically nucleated. Herein, the terrace height is found to be correlated to both the film morphology and the substrate surface energy. In particular, the presence of a layer of variable thickness with molecules lying face-on or side-on can be identified atop the terraces when the deposition is carried out on inert substrates. This phenomenon can be evidenced thanks to accurate height measurements made with atomic force microscopy and further data obtained with advanced scanning probe microscopy techniques operating in different environments, viz. liquid, air and vacuum. An upward displacement of molecules from the substrate to the top of the terraces is considered to be responsible of this layer formation, whose molecules weakly interact with the underlying terraces.

6.
Inorg Chem ; 61(4): 2251-2264, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35044759

RESUMEN

New insoluble layered zirconium phosphate carboxyaminophosphonates (ZPs), with the general formula Zr2(PO4)H5[(O3PCH2)2N(CH2)nCOO]2·mH2O (n = 3, 4, and 5), have been prepared and characterized. The crystal structure for n = 3 and 4 samples was determined ab initio from X-ray powder diffraction data. The structure for n = 3 was monoclinic in space group C2/c with the following unit cell parameters: a = 34.346(1) Å, b = 8.4930(2) Å, c = 9.0401(2) Å, and ß = 97.15(1)°. The structure for n = 4 was triclinic in space group P1̅ with the following unit cell parameters: a = 17.9803(9) Å, b = 8.6066(4) Å, c = 9.0478(3) Å, α = 90.466(3)°, ß = 94.910(4)°, and γ = 99.552(4)°. The two structures had the same connectivity as Zr phosphate glycine diphosphonate (n = 1), as previously reported. By intercalation of short amines, these layered compounds were exfoliated in single lamella or packets of a few lamellae, which formed colloidal dispersions in water. After a thorough characterization, the dispersed lamellae were functionalized with Ag nanoparticles, which were grown in situ on the surface of exfoliated lamellae. Finally, their antimicrobial activity was tested on several Gram-positive and Gram-negative bacteria. All of these systems were found to be active against the four pathogens most frequently isolated from orthopedic prosthetic infections and often causative of nosocomial infections. Interestingly, they were found to express powerful inhibitory activity even against bacterial strains exhibiting a relevant profile of antibiotic resistance such as Staphylococcus aureus ATCC 700699.


Asunto(s)
Plata
7.
Materials (Basel) ; 14(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34772050

RESUMEN

Differential entropy, along with fractal dimension, is herein employed to describe and interpret the shape complexity of self-similar organic islands. The islands are imaged with in situ Atomic Force Microscopy, following, step-by-step, the evolution of their shape while deposition proceeds. The fractal dimension shows a linear correlation with the film thickness, whereas the differential entropy presents an exponential plateau. Plotting differential entropy versus fractal dimension, a linear correlation can be found. This analysis enables one to discern the 6T growth on different surfaces, i.e., native SiOx or 6T layer, and suggests a more comprehensive interpretation of the shape evolution. Changes in fractal dimension reflect rougher variations of the island contour, whereas changes in differential entropy correlates with finer contour details. The computation of differential entropy therefore helps to obtain more physical information on the island shape dependence on the substrate, beyond the standard description obtained with the fractal dimension.

8.
J Microsc ; 280(3): 229-240, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32495384

RESUMEN

The root mean square (rms) surface roughness extracted from atomic force microscopy is widely employed to complement the characterisation of ion implantation processes in 4H-SiC. It is known that the protection of a carbon film eliminates or mitigates roughening of the SiC surface during postimplantation annealing. This study, based on a rich original data collection of Al+ ion implanted 4H-SiC samples, allows for a quantitative description of the surface morphology as a function of the annealing temperature and time and of the Al implanted concentration. With increasing thermal budget, the evolution from flat, to blurred with ripples, granular, and finally jagged surface, results in a monotonous increase in the root mean square roughness. Additional information is given by the trends of the roughness exponent and of the correlation length, extracted from the height-height correlation function, which account for the surface evolution below 1700°C and for the effect of the Al implanted concentration on the ripple size, respectively. A combination of low roughness parameter and high correlation length identify the transition from ripples to jagged morphology. LAY DESCRIPTION: Selective area doping is a key step in the fabrication of hexagonal Silicon Carbide (4H-SiC) power electronic devices. It is achieved by ion implantation followed by a high temperature postimplantation annealing to restore the lattice and electrically activate the dopants. Aluminium, the preferred p-type dopant, is electrically activated at temperature ranging between 1500°C and 2000°C. The time required to complete the activation process is longer the lower the annealing temperature, spanning between some minutes and hundreds of hours. During annealing, 4H-SiC wafers are encapsulated by a temperature-resistant carbon layer (C-cap) in order to avoid step bunching and reduce surface roughening. Nevertheless, surface modifications can occur at high temperature. For this reason, the characterisations of 4H-SiC doping processes report not only the electrical activation of the dopants, but also the root mean square surface roughness obtained at the end of the process. However, rms values can be scattered because technological parameters such as the heating system and the way to deposit and remove the C-cap can affect the final result as well as the process parameters. Furthermore, the C-cap resistance to long annealing has been proven only by electrical measurements, but the surface morphology has never been observed. This work presents a quantitative characterisation of the surface morphology of Al implanted 4H-SiC as a function of the annealing temperature, time and of the Al implanted concentration, independent of the heating system and of the C-cap technology. The produced sample collection allowed to correlate characteristic surface features with the corresponding quantities extracted from image analysis that can be more sensitive to process parameters than the sole rms. These findings can be used to enrich process optimisation tools.

9.
Regen Biomater ; 6(2): 121-127, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30967967

RESUMEN

The formation of amyloid fibrils from soluble proteins is a common form of self-assembly phenomenon that has fundamental connections with biological functions and human diseases. Lysozyme was converted from its soluble native state into highly organized amyloid fibrils. Ultrasonic treatment was used to break amyloid fibrils to fibrillar fragments-seeds. Atomic force microscopy and fluorescence microscopy was employed to characterize the morphology of the amyloid assemblies and neural cells-amyloid complexes. Our results demonstrate that prefibrillar intermediated and their mixture with proteins exhibit toxicity, although native proteins and fibrils appear to have no effect on number of cells. Our findings confirm that innocuous hen lysozyme can be engineered to produce both cytotoxic fibrillar fragments and non-toxic mature amyloid fibrils. Our work further strengthens the claim that amyloid conformation, and not the identity of the protein, is key to cellular toxicity and the underlying specific cell death mechanism.

10.
Nanoscale ; 10(48): 23018-23026, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30506071

RESUMEN

Metal-organic composites are of great interest for a wide range of applications. The control of their structure remains a challenge, one of the problems being a complex interplay of covalent and supramolecular interactions. This paper describes the self-assembly, thermal stability and phase transitions of ordered structures of silver atoms and thiol molecules spanning from the molecular to the mesoscopic scale. Building blocks of molecularly defined clusters formed from 44 silver atoms, each particle coated by a monolayer of 30 thiol ligands, are used as ideal building blocks. By changing solvent and temperature it is possible to tune the self-assembled 3D crystals of pristine nanoparticles or, conversely, 2D layered structures, with alternated stacks of Ag atoms and thiol monolayers. The study investigates morphological, chemical and structural stability of these materials between 25 and 300 °C in situ and ex situ at the nanoscale by combining optical and electronic spectroscopic and scattering techniques, scanning probe microscopies and density-functional theory (DFT) calculations. The proposed wet-chemistry approach is relatively cheap, easy to implement, and scalable, allowing the fabricated materials with tuned properties using the same building blocks.

11.
Micron ; 100: 60-72, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28514702

RESUMEN

While the widespread emergence of nanoscience and nanotechnology can be dated back to the early eighties, the last decade has witnessed a true coming of age of this research field, with novel nanomaterials constantly finding their way into marketed products. The performance of nanomaterials being dominated by their nanoscale morphology, their quantitative characterization with respect to a number of properties is often crucial. In this context, those imaging techniques able to resolve nanometer scale details are clearly key players. In particular, atomic force microscopy can yield a fully quantitative tridimensional (3D) topography at the nanoscale. Herein, we will review a set of morphological analysis based on the scaling approach, which give access to important quantitative parameters for describing nanomaterial samples. To generalize the use of such morphological analysis on all D-dimensions (1D, 2D and 3D), the review will focus on specific soft matter aggregates with fractal dimension ranging from just above 1 to just below 3.

12.
Chemphyschem ; 16(16): 3379-84, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26342212

RESUMEN

The amorphous aggregation of Aß1-40 peptide is addressed by using micromolding in capillaries. Both the morphology and the size of the aggregates are modulated by changing the contact angle of the sub-micrometric channel walls. Upon decreasing the hydrophilicity of the channels, the aggregates change their morphology from small aligned drops to discontinuous lines, thereby keeping their amorphous structure. Aß1-40 fibrils are observed at high contact angles.


Asunto(s)
Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquídeo , Dimetilpolisiloxanos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Sonda de Barrido , Fragmentos de Péptidos/metabolismo
13.
Acc Chem Res ; 47(8): 2692-9, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25068634

RESUMEN

This Account aims to describe our experience in the use of patterning techniques for addressing the self-organization processes of materials into spatially confined regions on technologically relevant surfaces. Functional properties of materials depend on their chemical structure, their assembly, and spatial distribution at the solid state; the combination of these factors determines their properties and their technological applications. In fact, by controlling the assembly processes and the spatial distribution of the resulting structures, functional materials can be guided to technological and specific applications. We considered the principal self-organizing processes, such as crystallization, dewetting and phase segregation. Usually, these phenomena produce defective molecular films, compromising their use in many technological applications. This issue can be overcome by using patterning techniques, which induce molecules to self-organize into well-defined patterned structures, by means of spatial confinement. In particular, we focus our attention on the confinement effect achieved by stamp-assisted deposition for controlling size, density, and positions of material assemblies, giving them new chemical/physical functionalities. We review the methods and principles of the stamp-assisted spatial confinement and we discuss how they can be advantageously exploited to control crystalline order/orientation, dewetting phenomena, and spontaneous phase segregation. Moreover, we highlight how physical/chemical properties of soluble functional materials can be driven in constructive ways, by integrating them into operating technological devices.

14.
Phys Chem Chem Phys ; 16(14): 6649-56, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24576989

RESUMEN

The structure of small gold nanoclusters (around 2.5 nm) deposited on different silica-on-silicon (SiOx/Si) substrates is investigated using several characterization techniques (AFM, XRD, EXAFS and GISAXS). The grain morphology and the surface roughness of the deposited gold cluster layers are determined by AFM. The in-plane GISAXS intensity is modelled in order to obtain information about the cluster size and the characteristic length scale of the surface roughness. The surface morphology of the deposited clusters depends on whether the native defect-rich (n-SiOx/Si) or the defect-poor substrate obtained by thermal treatment (t-SiO2/Si) is used. Gold clusters show a stronger tendency to aggregate when deposited on n-SiOx/Si, resulting in films characterized by a larger grain dimension (around 20 nm) and by a higher surface roughness (up to 5 nm). The more noticeable cluster aggregation on n-SiOx/Si substrates is explained in terms of metal-support interaction mediated by the defects located on the surface of the native silica substrate. Evidence of metal-support interaction is provided by EXAFS, demonstrating the existence of an Au-O distance for clusters deposited on n-SiOx/Si that is not found on t-SiO2/Si.

15.
PLoS One ; 9(12): e115780, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25551704

RESUMEN

ß amyloid peptide plays an important role in both the manifestation and progression of Alzheimer disease. It has a tendency to aggregate, forming low-molecular weight soluble oligomers, higher-molecular weight protofibrillar oligomers and insoluble fibrils. The relative importance of these single oligomeric-polymeric species, in relation to the morbidity of the disease, is currently being debated. Here we present an Atomic Force Microscopy (AFM) study of Aß(25-35) aggregation on hydrophobic dioleoylphosphatidylcholine (DOPC) and DOPC/docosahexaenoic 22∶6 acid (DHA) lipid bilayers. Aß(25-35) is the smallest fragment retaining the biological activity of the full-length peptide, whereas DOPC and DOPC/DHA lipid bilayers were selected as models of cell-membrane environments characterized by different fluidity. Our results provide evidence that in hydrophobic DOPC and DOPC/DHA lipid bilayers, Aß(25-35) forms layered aggregates composed of mainly annular structures. The mutual interaction between annular structures and lipid surfaces end-results into a membrane solubilization. The presence of DHA as a membrane-fluidizing agent is essential to protect the membrane from damage caused by interactions with peptide aggregates; to reduces the bilayer defects where the delipidation process starts.


Asunto(s)
Péptidos beta-Amiloides/química , Ácidos Docosahexaenoicos/química , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica , Fosfatidilcolinas/química , Enfermedad de Alzheimer/patología , Membrana Celular/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Placa Amiloide/química
16.
Langmuir ; 29(45): 13723-34, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24083627

RESUMEN

Ligand-protected gold nanoparticles exhibit large local curvatures, features rapidly varying over small scales, and chemical heterogeneity. Their imaging by scanning tunneling microscopy (STM) can, in principle, provide direct information on the architecture of their ligand shell, yet STM images require laborious analysis and are challenging to interpret. Here, we report a straightforward, robust, and rigorous method for the quantitative analysis of the multiscale features contained in STM images of samples consisting of functionalized Au nanoparticles deposited onto Au/mica. The method relies on the analysis of the topographical power spectral density (PSD) and allows us to extract the characteristic length scales of the features exhibited by nanoparticles in STM images. For the mixed-ligand-protected Au nanoparticles analyzed here, the characteristic length scale is 1.2 ± 0.1 nm, whereas for the homoligand Au NPs this scale is 0.75 ± 0.05 nm. These length scales represent spatial correlations independent of scanning parameters, and hence the features in the PSD can be ascribed to a fingerprint of the STM contrast of ligand-protected nanoparticles. PSD spectra from images recorded at different laboratories using different microscopes and operators can be overlapped across most of the frequency range, proving that the features in the STM images of nanoparticles can be compared and reproduced.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Microscopía de Túnel de Rastreo , Ligandos , Tamaño de la Partícula
17.
ACS Nano ; 7(2): 1257-64, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23350706

RESUMEN

Charge transport in organic thin film transistors takes place in the first few molecular layers in contact with the gate dielectric. Here we demonstrate that the charge transport pathways in these devices are extremely sensitive to the orientational defects of the first monolayers, which arise from specific growth conditions. Although these defects partially heal during the growth, they cause depletion of charge carriers in the first monolayer, and drive the current to flow in the monolayers above the first one. Moreover, the residual defects induce lower crystalline order and charge mobility. These results, which are not intuitively explained by electrostatics arguments, have been obtained by combining in situ real time structural and electrical characterization together with ex situ AFM measurements, on thin films of a relevant n-type organic semiconductor, N,N'-bis(n-octyl)-dicyanoperylene-3,4:9,10-bis dicarboximide grown by sublimation in a quasi-layer-by-layer mode at different substrate temperatures.

18.
Int J Mol Sci ; 12(9): 5719-35, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22016622

RESUMEN

A process for fabricating ordered organic films on large area is presented. The process allows growing sexithiophene ultra-thin films at precise locations on patterned Si/SiO(x) substrates by driving the orientation of growth. This process combines the parallel local anodic oxidation of Si/SiO(x) substrates with the selective arrangement of molecular ultra-thin film. The former is used to fabricate silicon oxide arrays of parallel lines of 400 nm in width over an area of 1 cm(2). Selective growth arises from the interplay between kinetic growth parameters and preferential interactions with the patterned surface. The result is an ultra-thin film of organic molecules that is conformal to the features of the fabricated motives.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/química , Nanoestructuras/química , Óxidos/química , Compuestos de Silicona/química , Tiofenos/química , Cristalografía por Rayos X , Estimulación Eléctrica , Microscopía de Fuerza Atómica , Oxidación-Reducción , Dispersión del Ángulo Pequeño , Propiedades de Superficie , Termodinámica , Difracción de Rayos X
19.
Chem Commun (Camb) ; 47(31): 8823-5, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21720629

RESUMEN

Alkanethiol Self-Assembly Monolayers (SAMs) were investigated by means of BiModal Atomic Force Microscopy. Morphological and mechanical properties show a parabolic trend vs. the chain length n, which is ascribed to the disorder at the SAMs/Au interface. This explains the trend of charge injection across SAMs in organic field effect transistors.

20.
Rev Sci Instrum ; 82(2): 025110, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21361636

RESUMEN

We present a home-built high-vacuum system for performing organic semiconductor thin-film growth and its electrical characterization during deposition (real-time) or after deposition (in situ). Since the environment conditions remain unchanged during the deposition and electrical characterization process, a direct correlation between growth mode and electrical properties of thin film can be obtained. Deposition rate and substrate temperature can be systematically set in the range 0.1-10 ML∕min and RT-150 °C, respectively. The sample-holder configuration allows the simultaneous electrical monitoring of up to five organic thin-film transistors (OTFTs). The OTFTs parameters such as charge carrier mobility µ, threshold voltage V(TH), and the on-off ratio I(on)∕I(off) are studied as a function of the semiconductor thickness, with a submonolayer accuracy. Design, operation, and performance of the setup are detailed. As an example, the in situ and real-time electrical characterization of pentacene TFTs is reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA