RESUMEN
OBJECTIVE: Obesity represents a significant global health challenge characterized by chronic low-grade inflammation and metabolic dysregulation. The hypothalamus, a key regulator of energy homeostasis, is particularly susceptible to obesity's deleterious effects. This study investigated the role of the immunoproteasome, a specialized proteasomal complex implicated in inflammation and cellular homeostasis, during metabolic diseases. METHODS: The levels of the immunoproteasome ß5i subunit were analyzed by immunostaining, western blotting, and proteasome activity assay in mice fed with either a high-fat diet (HFD) or a regular diet (CHOW). We also characterized the impact of autophagy inhibition on the levels of the immunoproteasome ß5i subunit and the activation of the AKT pathway. Finally, through confocal microscopy, we analyzed the contribution of ß5i subunit inhibition on mitochondrial function by flow cytometry and mitophagy assay. RESULTS: Using an HFD-fed obese mouse model, we found increased immunoproteasome levels in hypothalamic POMC neurons. Furthermore, we observed that palmitic acid (PA), a major component of saturated fats found in HFD, increased the levels of the ß5i subunit of the immunoproteasome in hypothalamic neuronal cells. Notably, the increase in immunoproteasome expression was associated with decreased autophagy, a critical cellular process in maintaining homeostasis and suppressing inflammation. Functionally, PA disrupted the insulin-glucose axis, leading to reduced AKT phosphorylation and increased intracellular glucose levels in response to insulin due to the upregulation of the immunoproteasome. Mechanistically, we identified that the protein PTEN, a key regulator of insulin signaling, was reduced in an immunoproteasome-dependent manner. To further investigate the potential therapeutic implications of these findings, we used ONX-0914, a specific immunoproteasome inhibitor. We demonstrated that this inhibitor prevents PA-induced insulin-glucose axis imbalance. Given the interplay between mitochondrial dysfunction and metabolic disturbances, we explored the impact of ONX-0914 on mitochondrial function. Notably, ONX-0914 preserved mitochondrial membrane potential and attenuated mitochondrial ROS production in the presence of PA. Moreover, we found that ONX-0914 reduced mitophagy in the presence of PA. CONCLUSIONS: Our findings strongly support the pathogenic involvement of the immunoproteasome in hypothalamic neurons in the context of HFD-induced obesity and metabolic disturbances. Targeting the immunoproteasome highlights a promising therapeutic strategy to mitigate the detrimental effects of obesity on the insulin-glucose axis and cellular homeostasis. This study provides valuable insights into the mechanisms driving obesity-related metabolic diseases and offers potential avenues for developing novel therapeutic interventions.
Asunto(s)
Dieta Alta en Grasa , Hipotálamo , Ratones Endogámicos C57BL , Neuronas , Obesidad , Complejo de la Endopetidasa Proteasomal , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Hipotálamo/metabolismo , Obesidad/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Masculino , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , OligopéptidosRESUMEN
OBJECTIVES: Xerostomia in SS patients has been associated with low quality and quantity of salivary mucins, which are fundamental for the hydration and protection of the oral mucosa. The aim of this study was to evaluate if cytokines induce aberrant mucin expression and whether tauroursodeoxycholic acid (TUDCA) is able to counteract such an anomaly. METHODS: Labial salivary glands from 16 SS patients and 15 control subjects, as well as 3D acini or human submandibular gland cells stimulated with TNF-α or IFN-γ and co-incubated with TUDCA, were analysed. mRNA and protein levels of Mucin 1 (MUC1) and MUC7 were determined by RT-qPCR and western blot, respectively. Co-immunoprecipitation and immunofluorescence assays for mucins and GRP78 [an endoplasmic reticulum (ER)-resident protein] were also performed. mRNA levels of RelA/p65 (nuclear factor-κB subunit), TNF-α, IL-1ß, IL-6, SEL1L and EDEM1 were determined by RT-qPCR, and RelA/p65 localization was evaluated by immunofluorescence. RESULTS: MUC1 is overexpressed and accumulated in the ER of labial salivary gland from SS patients, while MUC7 accumulates throughout the cytoplasm of acinar cells; however, MUC1, but not MUC7, co-precipitated with GRP78. TUDCA diminished the overexpression and aberrant accumulation of MUC1 induced by TNF-α and IFN-γ, as well as the nuclear translocation of RelA/p65, together with the expression of inflammatory and ER stress markers in 3D acini. CONCLUSION: Chronic inflammation alters the secretory process of MUC1, inducing ER stress and affecting the quality of saliva in SS patients. TUDCA showed anti-inflammatory properties decreasing aberrant MUC1 accumulation. Further studies are necessary to evaluate the potential therapeutic effect of TUDCA in restoring glandular homeostasis in SS patients.
Asunto(s)
Células Acinares/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mucina-1/efectos de los fármacos , Glándulas Salivales Menores/efectos de los fármacos , Síndrome de Sjögren/metabolismo , Glándula Submandibular/efectos de los fármacos , Ácido Tauroquenodesoxicólico/farmacología , Xerostomía/metabolismo , Células Acinares/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/genética , Femenino , Proteínas de Choque Térmico/efectos de los fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Inmunoprecipitación , Técnicas In Vitro , Interferón gamma/farmacología , Interleucina-1beta/efectos de los fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Mucina-1/genética , Mucina-1/metabolismo , Mucinas/efectos de los fármacos , Mucinas/genética , Mucinas/metabolismo , Proteínas/efectos de los fármacos , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Glándulas Salivales Menores/metabolismo , Proteínas y Péptidos Salivales/efectos de los fármacos , Proteínas y Péptidos Salivales/genética , Proteínas y Péptidos Salivales/metabolismo , Síndrome de Sjögren/genética , Glándula Submandibular/citología , Glándula Submandibular/metabolismo , Factor de Transcripción ReIA/efectos de los fármacos , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Xerostomía/genéticaRESUMEN
Proteasome inhibitors have been actively tested as potential anticancer drugs and in the treatment of inflammatory and autoimmune diseases. Unfortunately, cells adapt to survive in the presence of proteasome inhibitors activating a variety of cell responses that explain why these therapies have not fulfilled their expected results. In addition, all proteasome inhibitors tested and approved by the FDA have caused a variety of side effects in humans. Here, we describe the different types of proteasome complexes found within cells and the variety of regulators proteins that can modulate their activities, including those that are upregulated in the context of inflammatory processes. We also summarize the adaptive cellular responses activated during proteasome inhibition with special emphasis on the activation of the Autophagic-Lysosomal Pathway (ALP), proteaphagy, p62/SQSTM1 enriched-inclusion bodies, and proteasome biogenesis dependent on Nrf1 and Nrf2 transcription factors. Moreover, we discuss the role of IRE1 and PERK sensors in ALP activation during ER stress and the involvement of two deubiquitinases, Rpn11 and USP14, in these processes. Finally, we discuss the aspects that should be currently considered in the development of novel strategies that use proteasome activity as a therapeutic target for the treatment of human diseases.
Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico , Humanos , Inmunomodulación/efectos de los fármacos , Lisosomas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Proteasoma/uso terapéutico , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína DesplegadaRESUMEN
Objectives: Labial salivary glands (LSGs) of SS patients show alterations related to endoplasmic reticulum stress. Glandular dysfunction could be partly the consequence of an altered inositol-requiring enzyme 1α (IRE1α)/X box-binding protein 1 (XBP-1) signalling pathway of the unfolded protein response, which then regulates genes involved in biogenesis of the secretory machinery. This study aimed to determine the expression, promoter methylation and localization of the IRE1α/XBP-1 pathway components in LSGs of SS patients and also their expression induced by IFN-γ in vitro. Methods: IRE1α, XBP-1 and glucose-regulated protein 78 (GRP78) mRNA and protein levels were measured by qPCR and western blot, respectively, in LSGs of SS patients (n = 47) and control subjects (n = 37). Methylation of promoters was evaluated by methylation-sensitive high resolution melting, localization was analysed by immunofluorescence and induction of the IRE1α/XBP-1 pathway components by IFN-γ was evaluated in 3D acini. Results: A significant decrease of IRE1α, XBP-1u, XBP-1s, total XBP-1 and GRP78 mRNAs was observed in LSGs of SS patients, which was correlated with increased methylation levels of their respective promoters, and consistently the protein levels for IRE1α, XBP-1s and GRP78 were observed to decrease. IFN-γ decreased the mRNA and protein levels of XBP-1s, IRE1α and GRP78, and increased methylation of their promoters. Significant correlations were also found between IRE1α/XBP-1 pathway components and clinical parameters. Conclusion: Decreased mRNA levels for IRE1α, XBP-1 and GRP78 can be partially explained by hypermethylation of their promoters and is consistent with chronic endoplasmic reticulum stress, which may explain the glandular dysfunction observed in LSGs of SS patients. Additionally, glandular stress signals, including IFN-γ, could modulate the expression of the IRE1α/XBP-1 pathway components.