RESUMEN
The midgut of insects is involved in digestion, osmoregulation and immunity. Although several defensive strategies are present in this organ, its organization and function may be disturbed by some insecticidal agents, including bioactive proteins like lectins and protease inhibitors (PIs) from plants. PIs interfere with digestion, leading to poor nutrient absorption and decreasing amino acid bioavailability. Intake of PIs can delay development, cause deformities and reduce fertility. Ingestion of PIs may lead to changes in the set of proteases secreted in the insect gut, but this response is often insufficient and results in aggravation of the malnutrition status. Lectins are proteins that are able to interact with glycoconjugates, including those linked to cell surfaces. Their effects on the midgut include disruption of the peritrophic matrix, brush border and secretory cell layer; induction of apoptosis and oxidative stress; interference with nutrient absorption and transport proteins; and damaging effects on symbionts. In addition, lectins can cross the intestinal barrier and reach the hemolymph. The establishment of resistant insect populations due to selective pressure resulting from massive use of a bioactive protein is an actual possibility, but this can be minimized by the multiple mode-of-action of these proteins, mainly the lectins. © 2018 Society of Chemical Industry.
Asunto(s)
Sistema Digestivo/efectos de los fármacos , Control de Insectos/métodos , Insectos/anatomía & histología , Lectinas/farmacología , Plantas/química , Inhibidores de Proteasas/farmacología , Adaptación Fisiológica/efectos de los fármacos , Animales , Insectos/fisiologíaRESUMEN
This study reports the effect of an aqueous extract from Moringa oleifera Lam. flowers on Biomphalaria glabrata embryos and adults and on Schistosoma mansoni adult worms. The extract contains tannins, saponins, flavones, flavonols, xanthones, and trypsin inhibitor activity. The toxicity of the extract on Artemia salina larvae was also investigated to determine the safety of its use for schistosomiasis control. After incubation for 24h, the flower extract significantly (p<0.05) delayed the development of B. glabrata embryos and promoted mortality of adult snails (LC50: 2.37±0.5mgmL(-1)). Furthermore, treatment with the extract disrupted the development of embryos generated by snails, with most of them remaining in the blastula stage while control embryos were already in the gastrula stage. Flower extract killed A. salina larvae with a LC50 value (0.2±0.015mgmL(-1)) lower than that determined for snails. A small reduction (17%) in molluscicidal activity was detected when flower extract (2.37mgmL(-1)) was exposed to tropical environmental conditions (UVI index ranging from 1 to 14, temperature from 25 to 30°C, and 65% relative humidity). Toxicity to A. salina was also reduced (LC50 value of 0.28±0.01mgmL(-1)). In conclusion, M. oleifera flower extract had deleterious effects on B. glabrata adults and embryos. However, unrestricted use to control schistosomiasis should be avoided due to the toxicity of this extract on A. salina.