Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1385493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659983

RESUMEN

The escalating global threat of antimicrobial resistance necessitates prospecting uncharted microbial biodiversity for novel therapeutic leads. This study mines the promising chemical richness of Bacillus licheniformis LHG166, a prolific exopolysaccharide (EPSR2-7.22 g/L). It comprised 5 different monosaccharides with 48.11% uronic acid, 17.40% sulfate groups, and 6.09% N-acetyl glucosamine residues. EPSR2 displayed potent antioxidant activity in DPPH and ABTS+, TAC and FRAP assays. Of all the fungi tested, the yeast Candida albicans displayed the highest susceptibility and antibiofilm inhibition. The fungi Aspergillus niger and Penicillium glabrum showed moderate EPSR2 susceptibility. In contrast, the fungi Mucor circinelloides and Trichoderma harzianum were resistant. Among G+ve tested bacteria, Enterococcus faecalis was the most susceptible, while Salmonella typhi was the most sensitive to G-ve pathogens. Encouragingly, EPSR2 predominantly demonstrated bactericidal effects against both bacterial classes based on MBC/MIC of either 1 or 2 superior Gentamicin. At 75% of MBC, EPSR2 displayed the highest anti-biofilm activity of 88.30% against B. subtilis, while for G-ve antibiofilm inhibition, At 75% of MBC, EPSR2 displayed the highest anti-biofilm activity of 96.63% against Escherichia coli, Even at the lowest dose of 25% MBC, EPSR2 reduced biofilm formation by 84.13% in E. coli, 61.46% in B. subtilis. The microbial metabolite EPSR2 from Bacillus licheniformis LHG166 shows promise as an eco-friendly natural antibiotic alternative for treating infections and oxidative stress.

2.
RSC Adv ; 13(38): 26406-26417, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37671337

RESUMEN

In the current study, Bacillus velezensis AG6 was isolated from sediment samples in the Red Sea, identified by traditional microbiological techniques and phylogenetic 16S rRNA sequences. Among eight isolates screened for exopolysaccharide (EPS) production, the R6 isolate was the highest producer with a significant fraction of EPS (EPSF6, 5.79 g L-1). The EPSF6 molecule was found to have a molecular weight (Mw) of 2.7 × 104 g mol-1 and a number average (Mn) of 2.6 × 104 g mol-1 when it was analyzed using GPC. The FTIR spectrum indicated no sulfate but uronic acid (43.8%). According to HPLC, the EPSF6 fraction's monosaccharides were xylose, galactose, and galacturonic acid in a molar ratio of 2.0 : 0.5 : 2.0. DPPH, H2O2, and ABTS tests assessed EPSF6's antioxidant capabilities at 100, 300, 500, 1000, and 1500 µg mL-1 for 15, 60, 45, and 60 minutes. The overall antioxidant activities were dose- and time-dependently increased, and improved by increasing concentrations from 100 to 1500 µg mL-1 after 60 minutes and found to be 91.34 ± 1.1%, 80.20 ± 1.4% and 75.28 ± 1.1% respectively. Next, EPSF6 displayed considerable inhibitory activity toward the proliferation of six cancerous cell lines. Anti-inflammatory tests were performed using lipoxygenase (5-LOX) and cyclooxygenase (COX-2). An MTP turbidity assay method was applied to show the ability of EPSF6 to inhibit Gram-positive bacteria, Gram-negative bacteria, and antibiofilm formation. Together, this study sheds light on the potential pharmacological applications of a secondary metabolite produced by marine Bacillus velezensis AG6. Its expected impact on human health will increase as more research and studies are conducted globally.

3.
Polymers (Basel) ; 15(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37571197

RESUMEN

NDBs were fabricated from gum Arabic (GA) and polyvinyl alcohol (PVA) in different ratios using novel techniques (casting, dehydration, and peeling). The GA/PVA blends were cast with a novel vibration-free horizontal flow (VFHF) technique, producing membranes free of air bubble defects with a homogenous texture, smooth surface, and constant thickness. The casting process was achieved on a self-electrostatic template (SET) made of poly-(methyl methacrylate), which made peeling the final product membranes easy due to its non-stick behavior. After settling the casting of the membranous, while blind, the sheets were dried using nanometric dehydration under a mild vacuum stream using a novel stratified nano-dehydrator (SND) loaded with P2O5. After drying the NDB, the dry, smooth membranes were peeled easily without scratching defects. The physicochemical properties of the NDBs were investigated using FTIR, XRD, TGA, DTA, and AFM to ensure that the novel techniques did not distort the product quality. The NDBs retained their virgin characteristics, namely, their chemical functional groups (FTIR results), crystallinity index (XRD data), thermal stability (TGA and DTA), and ultrastructural features (surface roughness and permeability), as well as their microbial biodegradation ability. Adding PVA enhanced the membrane's properties except for mass loss, whereby increasing the GA allocation in the NDB blend reduces its mass loss at elevated temperatures. The produced bioplastic membranes showed suitable mechanical properties for food packaging applications and in the pharmaceutical industry for the controlled release of drugs. In comparison to control samples, the separated bacteria and fungi destroyed the bioplastic membranes. Pseudomonas spp. and Bacillus spp. were the two main strains of isolated bacteria, and Rhizobus spp. was the main fungus. The nano-dehydration method gave the best solution for the prompt drying of water-based biopolymers free of manufacturing defects, with simple and easily acquired machinery required for the casting and peeling tasks, in addition to its wonderful biodegradation behavior when buried in wet soil.

4.
Polymers (Basel) ; 15(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37376306

RESUMEN

Passivated-carbon quantum dots (P-CQDs) have been attracting great interest as an antimicrobial therapy tool due to their bright fluorescence, lack of toxicity, eco-friendly nature, simple synthetic schemes, and possession of photocatalytic functions comparable to those present in traditional nanometric semiconductors. Besides synthetic precursors, CQDs can be synthesized from a plethora of natural resources including microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC). Converting MCC into NCC is performed chemically via the top-down route, while synthesizing CODs from NCC can be performed via the bottom-up route. Due to the good surface charge status with the NCC precursor, we focused in this review on synthesizing CQDs from nanocelluloses (MCC and NCC) since they could become a potential source for fabricating carbon quantum dots that are affected by pyrolysis temperature. There are several P-CQDs synthesized with a wide spectrum of featured properties, namely functionalized carbon quantum dots (F-CQDs) and passivated carbon quantum dots (P-CQDs). There are two different important P-CQDs, namely 2,2'-ethylenedioxy-bis-ethylamine (EDA-CQDs) and 3-ethoxypropylamine (EPA-CQDs), that have achieved desirable results in the antiviral therapy field. Since NoV is the most common dangerous cause of nonbacterial, acute gastroenteritis outbreaks worldwide, this review deals with NoV in detail. The surficial charge status (SCS) of the P-CQDs plays an important role in their interactions with NoVs. The EDA-CQDs were found to be more effective than EPA-CQDs in inhibiting the NoV binding. This difference may be attributed to their SCS as well as the virus surface. EDA-CQDs with surficial terminal amino (-NH2) groups are positively charged at physiological pH (-NH3+), whereas EPA-CQDs with surficial terminal methyl groups (-CH3) are not charged. Since the NoV particles are negatively charged, they are attracted to the positively charged EDA-CQDs, resulting in enhancing the P-CQDs concentration around the virus particles. The carbon nanotubes (CNTs) were found to be comparable to the P-CQDs in the non-specific binding with NoV capsid proteins, through complementary charges, π-π stacking, and/or hydrophobic interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...