Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Integr Neurosci ; 23(2): 41, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38419452

RESUMEN

BACKGROUND: Different types of stress inflicted in early stages of life elevate the risk, among adult animals and humans, to develop disturbed emotional-associated behaviors, such as hyperphagia or depression. Early-life stressed (ELS) adults present hyperactivity of the hypothalamus-pituitary-adrenal (HPA) axis, which is a risk factor associated with mood disorders. However, the prevalence of hyperphagia (17%) and depression (50%) is variable among adults that experienced ELS, suggesting that the nature, intensity, and chronicity of the stress determines the specific behavioral alteration that those individuals develop. METHODS: We analyzed corticosterone serum levels, Crh, GR, Crhr1 genes expression in the hypothalamic paraventricular nucleus, amygdala, and hippocampus due to their regulatory role on HPA axis in adult rats that experienced maternal separation (MS) or limited nesting material (LNM) stress; as well as the serotonergic system activity in the same regions given its association with the corticotropin-releasing hormone (CRH) pathway functioning and with the hyperphagia and depression development. RESULTS: Alterations in dams' maternal care provoked an unresponsive or hyper-responsive HPA axis function to an acute stress in MS and LNM adults, respectively. The differential changes in amygdala and hippocampal CRH system seemed compensating alterations to the hypothalamic desensitized glucocorticoids receptor (GR) in MS or hypersensitive in LNM. However, both adult animals developed hyperphagia and depression-like behavior when subjected to the forced-swimming test, which helps to understand that both hypo and hypercortisolemic patients present those disorders. CONCLUSION: Different ELS types induce neuroendocrine, brain CRH and 5-hydroxytriptamine (5-HT) systems' alterations that may interact converging to develop similar maladaptive behaviors.


Asunto(s)
Hormona Liberadora de Corticotropina , Serotonina , Humanos , Ratas , Animales , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Serotonina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Depresión/etiología , Privación Materna , Sistema Hipófiso-Suprarrenal/metabolismo , Encéfalo/metabolismo , Hiperfagia/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico
2.
Front Endocrinol (Lausanne) ; 14: 1266081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900150

RESUMEN

The hypothalamic type 2 corticotropin releasing hormone receptor (CRH-R2) plays critical roles in homeostatic regulation, particularly in fine tuning stress recovery. During acute stress, the CRH-R2 ligands CRH and urocortins promote adaptive responses and feeding inhibition. However, in rodent models of chronic stress, over-exposure of hypothalamic CRH-R2 to its cognate agonists is associated with urocortin 2 (Ucn2) resistance; attenuated cAMP-response element binding protein (CREB) phosphorylation and increased food intake. The molecular mechanisms involved in these altered CRH-R2 signalling responses are not well described. In the present study, we used the adult mouse hypothalamus-derived cell line mHypoA-2/30 to investigate CRH-R2 signalling characteristics focusing on gene expression of molecules involved in feeding and circadian regulation given the role of clock genes in metabolic control. We identified functional CRH-R2 receptors expressed in mHypoA-2/30 cells that differentially regulate CREB and AMP-activated protein kinase (AMPK) phosphorylation and downstream expression of the appetite-regulatory genes proopiomelanocortin (Pomc) and neuropeptide Y (Npy) in accordance with an anorexigenic effect. We studied for the first time the effects of Ucn2 on clock genes in native and in a circadian bioluminescence reporter expressing mHypoA-2/30 cells, detecting enhancing effects of Ucn2 on mRNA levels and rhythm amplitude of the circadian regulator Aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), which could facilitate anorexic responses in the activity circadian phase. These data uncover novel aspects of CRH-R2 hypothalamic signalling that might be important in regulation of circadian feeding during stress responses.


Asunto(s)
Hormona Liberadora de Corticotropina , Receptores de Hormona Liberadora de Corticotropina , Ratones , Animales , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Hipotálamo/metabolismo , Urocortinas/genética , Urocortinas/metabolismo , Expresión Génica , Neuronas/metabolismo
3.
eNeuro ; 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545425

RESUMEN

Among the modulatory functions of thyrotropin-releasing hormone (TRH), an anorectic behavior in rodents is observed when centrally injected. Hypothalamic PVN neurons receive serotonergic inputs from dorsal raphe nucleus and express serotonin (5HT) receptors such as 5HT1A, 5HT2A/2C, 5HT6, which are involved in 5HT-induced feeding regulation. Rats subjected to dehydration-induced anorexia (DIA) model show increased PVN TRH mRNA expression, associated with their decreased food intake. We analyzed whether 5HT input is implicated in the enhanced PVN TRH transcription that anorectic rats exhibit, given that 5HT increases TRH expression and release when studied in vitro By using mHypoA-2/30 hypothalamic cell cultures, we found that 5HT stimulated TRH mRNA, pCREB and pERK1/2 levels. By inhibiting basal PKA or PKC activities or those induced by 5HT, pCREB or pERK1/2 content did not increase suggesting involvement of both kinases in their phosphorylation. 5HT effect on TRH mRNA was not affected by PKA inhibition, but it diminished in the presence of PKCi suggesting involvement of PKC in 5HT-induced TRH increased transcription. This likely involves 5HT2A/2C and the activation of alternative transduction pathways than those studied here. In agreement with the in vitro data, we found that injecting 5HT2A/2C antagonists into the PVN of DIA rats reversed the increased TRH expression of anorectic animals, as well as their decreased food intake; also, the agonist reduced food intake of hungry restricted animals along with elevated PVN TRH mRNA levels. Our results support that the anorectic effects of serotonin are mediated by PVN TRH in this model.Significance statementInteraction between brain peptides and neurotransmitters' pathways regulates feeding behavior, but when altered it could lead to the development of eating disorders, such as anorexia. An abnormal increased TRH expression in hypothalamic PVN results in dehydration-induced anorectic rats, associated to their low food intake. The role of neurotransmitters in that alteration is unknown, and since serotonin inhibits feeding and has receptors in PVN, we analyzed its participation in increasing TRH expression and reducing feeding in anorectic rats. By antagonizing PVN serotonin receptors in anorectic rats, we identify decreased TRH expression and increased feeding, suggesting that the anorectic effects of serotonin are mediated by PVN TRH. Elucidating brain networks involved in feeding regulation would help to design therapies for eating disorders.

4.
Clin Sci (Lond) ; 135(14): 1631-1647, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34296750

RESUMEN

Raf kinases signal via extracellular signal-regulated kinases 1/2 (ERK1/2) to drive cell division. Since activating mutations in BRAF (B-Raf proto-oncogene, serine/threonine kinase) are highly oncogenic, BRAF inhibitors including dabrafenib have been developed for cancer. Inhibitors of ERK1/2 signalling used for cancer are cardiotoxic in some patients, raising the question of whether dabrafenib is cardiotoxic. In the heart, ERK1/2 signalling promotes not only cardiomyocyte hypertrophy and is cardioprotective but also promotes fibrosis. Our hypothesis is that ERK1/2 signalling is not required in a non-stressed heart but is required for cardiac remodelling. Thus, dabrafenib may affect the heart in the context of, for example, hypertension. In experiments with cardiomyocytes, cardiac fibroblasts and perfused rat hearts, dabrafenib inhibited ERK1/2 signalling. We assessed the effects of dabrafenib (3 mg/kg/d) on male C57BL/6J mouse hearts in vivo. Dabrafenib alone had no overt effects on cardiac function/dimensions (assessed by echocardiography) or cardiac architecture. In mice treated with 0.8 mg/kg/d angiotensin II (AngII) to induce hypertension, dabrafenib inhibited ERK1/2 signalling and suppressed cardiac hypertrophy in both acute (up to 7 d) and chronic (28 d) settings, preserving ejection fraction. At the cellular level, dabrafenib inhibited AngII-induced cardiomyocyte hypertrophy, reduced expression of hypertrophic gene markers and almost completely eliminated the increase in cardiac fibrosis both in interstitial and perivascular regions. Dabrafenib is not overtly cardiotoxic. Moreover, it inhibits maladaptive hypertrophy resulting from AngII-induced hypertension. Thus, Raf is a potential therapeutic target for hypertensive heart disease and drugs such as dabrafenib, developed for cancer, may be used for this purpose.


Asunto(s)
Antineoplásicos/farmacología , Fibrosis/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Imidazoles/farmacología , Oximas/farmacología , Animales , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Ratones Endogámicos C57BL , Miocardio/patología , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
5.
Clin Nutr ESPEN ; 44: 437-444, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34330502

RESUMEN

BACKGROUND & AIMS: Coronavirus disease 2019 (COVID-19) patients with severe complications have shown comorbidities with cardiovascular-disease, hypertension and type 2 diabetes mellitus; clinical disorders that share the common metabolic alterations of insulin resistance and dyslipidaemia. A high triglyceride to high density lipoprotein cholesterol (Tg/HDL c) ratio has been associated with reduced insulin sensitivity, metabolic syndrome and adverse cardiovascular events. Our aim in this study was to determine the association between different components of the lipid profile and particularly the Tg/HDL c ratio with severe complications like the requirement of invasive mechanical ventilation in COVID-19 patients. METHODS: We collected demographic, clinical and biochemical data to conduct a cohort study in 43 adult patients with confirmed COVID-19 diagnosis by quantitative polymerase chain reaction (qPCR) at baseline and in the subsequent 15 days. Patients were subjected to a very similar treatment scheme with the JAK1/2 inhibitor ruxolitinib. Descriptive statistics, variable association and logistic regression were applied to identify predictors of disease severity among elements and calculations from the lipid profile. RESULTS: Patients were aged 57 ± 14 years; 55.8% were male from which 75% required hospitalization and 44.2% were female who 58% were hospitalized. The most common comorbidities were type 2 diabetes mellitus (58%) and hypertension (40%). Hospitalized and critical care patients showed lower HDL c blood levels and increased Tg/HDL c ratio than those with outpatient management and mild/asymptomatic COVID-19. Tg/HDL c ratio correlated with variables of disease severity such as lactate dehydrogenase (LDH) levels (r = 0.356; p < 0.05); National Early Warning Score 2 (NEWS 2) (r = 0.495; p < 0.01); quick sequential organ failure assessment (qSOFA) (r = 0.538; p < 0.001); increased need of oxygen support (r = 0.447; p < 0.01) and requirement of mechanical ventilation (r = 0.378; p < 0.05). Tg/HDL c ratio had a negative correlation with partial oxygen saturation/fraction of inspired oxygen (SaO 2/FiO2) ratio (r = -0.332;p < 0.05). Linear regression analysis showed that Tg/HDL c ratio can predict increases in inflammatory factors like LDH (p < 0.01); ferritin (p < 0.01) and D-dimer (p < 0.001). Logistic regression model indicated that ≥7.45 Tg/HDL c ratio predicts requirement of invasive mechanical ventilation (OR 11.815, CI 1.832-76.186, p < 0.01). CONCLUSIONS: The Tg/HDLc ratio can be used as an early biochemical marker of COVID-19 severe prognosis with requirement of invasive mechanical ventilation.


Asunto(s)
COVID-19/sangre , COVID-19/patología , HDL-Colesterol/sangre , Triglicéridos/sangre , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Humanos , Masculino , México , Persona de Mediana Edad , Valor Predictivo de las Pruebas , SARS-CoV-2 , Índice de Severidad de la Enfermedad
6.
Nutrients ; 9(10)2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-29057835

RESUMEN

Individuals who consume a diet deficient in zinc (Zn-deficient) develop alterations in hypothalamic-pituitary-thyroid axis function, i.e., a low metabolic rate and cold insensitivity. Although those disturbances are related to primary hypothyroidism, intrauterine or postnatal Zn-deficient adults have an increased thyrotropin (TSH) concentration, but unchanged thyroid hormone (TH) levels and decreased body weight. This does not support the view that the hypothyroidism develops due to a low Zn intake. In addition, intrauterine or postnatal Zn-deficiency in weaned and adult rats reduces the activity of pyroglutamyl aminopeptidase II (PPII) in the medial-basal hypothalamus (MBH). PPII is an enzyme that degrades thyrotropin-releasing hormone (TRH). This hypothalamic peptide stimulates its receptor in adenohypophysis, thereby increasing TSH release. We analyzed whether earlier low TH is responsible for the high TSH levels reported in adults, or if TRH release is enhanced by Zn deficiency at weaning. Dams were fed a 2 ppm Zn-deficient diet in the period from one week prior to gestation and up to three weeks after delivery. We found a high release of hypothalamic TRH, which along with reduced MBH PPII activity, increased TSH levels in Zn-deficient pups independently of changes in TH concentration. We found that primary hypothyroidism did not develop in intrauterine Zn-deficient weaned rats and we confirmed that metal deficiency enhances TSH levels since early-life, favoring subclinical hypothyroidism development which remains into adulthood.


Asunto(s)
Enfermedades Carenciales/complicaciones , Hipotiroidismo/etiología , Efectos Tardíos de la Exposición Prenatal , Glándula Tiroides/metabolismo , Hormona Liberadora de Tirotropina/sangre , Tirotropina/sangre , Zinc/deficiencia , Aminopeptidasas/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Enfermedades Asintomáticas , Biomarcadores/sangre , Enfermedades Carenciales/sangre , Enfermedades Carenciales/fisiopatología , Modelos Animales de Enfermedad , Femenino , Edad Gestacional , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Hipotiroidismo/sangre , Hipotiroidismo/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos , Estado Nutricional , Adenohipófisis/metabolismo , Adenohipófisis/fisiopatología , Embarazo , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Ratas Wistar , Glándula Tiroides/fisiopatología , Regulación hacia Arriba , Destete , Zinc/sangre
7.
Artículo en Inglés | MEDLINE | ID: mdl-28744256

RESUMEN

A balanced interaction between the homeostatic mechanisms of mother and the developing organism during pregnancy and in early neonatal life is essential in order to ensure optimal fetal development, ability to respond to various external and internal challenges, protection from adverse programming, and safeguard maternal care availability after parturition. In the majority of pregnancies, this relationship is highly effective resulting in successful outcomes. However, in a number of pathological settings, perturbations of the maternal homeostasis disrupt this symbiosis and initiate adaptive responses with unpredictable outcomes for the fetus or even the neonate. This may lead to development of pathological phenotypes arising from developmental reprogramming involving interaction of genetic, epigenetic, and environmental-driven pathways, sometimes with acute consequences (e.g., growth impairment) and sometimes delayed (e.g., enhanced susceptibility to disease) that last well into adulthood. Most of these adaptive mechanisms are activated and controlled by hormones of the hypothalamo-pituitary adrenal axis under the influence of placental steroid and peptide hormones. In particular, the hypothalamic peptide corticotropin-releasing hormone (CRH) plays a key role in feto-maternal communication by orchestrating and integrating a series of neuroendocrine, immune, metabolic, and behavioral responses. CRH also regulates neural networks involved in maternal behavior and this determines efficiency of maternal care and neonate interactions. This review will summarize our current understanding of CRH actions during the perinatal period, focusing on the physiological roles for both mother and offspring and also how external challenges can alter CRH actions and potentially impact on fetus/neonate health.

8.
Int J Dev Neurosci ; 46: 115-24, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26315400

RESUMEN

Thyrotropin-releasing hormone (TRH) synthesized in hypothalamic paraventricular nucleus directs hypothalamus-pituitary-thyroid (HPT) axis function, regulating thyrotropin release from adenohypophysis and thyroid hormones serum concentration. Pyroglutamyl aminopeptidase II (PPII), a Zn-dependent metallopeptidase located in adenohypophysis and medial-basal-hypothalamus degrades TRH released from the median eminence and participates in HPT axis function by regulating TRH-induced thyrotropin release from adenohypophysis. It is unknown whether dietary Zn deficiency down-regulates PPII. Our aim was to compare adenohypohyseal and medial-basal-hypothalamic PPII activity and expression of adult rats fed a Zn-deficient diet (2ppm) throughout their lifespan (DD), prenatally (DC) or after weaning (CD) vs. that of animals fed a control diet (20ppm:CC). Female rats consumed a Zn-deficient or control diet from two weeks before gestation and up to the end of lactation. We analyzed adenohypophyseal and medial-basal-hypothalamic PPII activity of dams and male offspring when adults; its relation to median eminence TRH, serum thyrotropin, leptin and thyroid hormones concentration. Offspring ate the same diet as their dams (CC, DD) or were switched from dietary regime after weaning (CD, DC) and until 2.5 months of age. DD males showed decreased adenohypophyseal and medial-basal-hypothalamic PPII activity, along with high thyrotropin serum concentration. Post-weaning Zn-deficiency (CD) decreased PPII activity only in adenohypophysis and increased thyrotropin circulating levels. Zn-replenishment (DC) normalized PPII activity in both regions and serum thyrotropin concentration. Adenohypophyseal PPII activity decreased and prolactin levels increased in Zn-deficient dams. We concluded that long-term changes in dietary Zn down-regulate PPII activity independently of T3, increasing thyrotropin serum concentration, overall resembling sub-clinical hypothyroidism.


Asunto(s)
Regulación hacia Abajo/fisiología , Hipotálamo Medio/metabolismo , Zinc/deficiencia , Factores de Edad , Aminopeptidasas/deficiencia , Aminopeptidasas/genética , Análisis de Varianza , Animales , Regulación hacia Abajo/efectos de los fármacos , Femenino , Lactancia/efectos de los fármacos , Masculino , Embarazo , Prolactina/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , ARN Mensajero/metabolismo , Radioinmunoensayo , Ratas , Ratas Wistar , Factores Sexuales , Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/metabolismo , Zinc/administración & dosificación , Zinc/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...