Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0302328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683843

RESUMEN

The mosquito Aedes spp. holds important relevance for human and animal health, as it serves as a vector for transmitting multiple diseases, including dengue and Zika virus. The microbiome's impact on its host's health and fitness is well known. However, most studies on mosquito microbiomes have been conducted in laboratory settings. We explored the mixed microbial communities within Aedes spp., utilizing the 16S rRNA gene for diversity analysis and shotgun metagenomics for functional genomics. Our samples, which included Ae. aegypti and Ae. albopictus, spanned various developmental stages-eggs, larvae, and adults-gathered from five semiurban areas in Mexico. Our findings revealed a substantial diversity of 8,346 operational taxonomic units (OTUs), representing 967 bacterial genera and 126,366 annotated proteins. The host developmental stage was identified as the primary factor associated with variations in the microbiome composition. Subsequently, we searched for genes and species involved in mosquito biocontrol. Wolbachia accounted for 9.6% of the 16S gene sequences. We observed a high diversity (203 OTUs) of Wolbachia strains commonly associated with mosquitoes, such as wAlb, with a noticeable increase in abundance during the adult stages. Notably, we detected the presence of the cifA and cifB genes, which are associated with Wolbachia's cytoplasmic incompatibility, a biocontrol mechanism. Additionally, we identified 221 OTUs related to Bacillus, including strains linked to B. thuringiensis. Furthermore, we discovered multiple genes encoding insecticidal toxins, such as Cry, Mcf, Vip, and Vpp. Overall, our study contributes to the understanding of mosquito microbiome biodiversity and metabolic capabilities, which are essential for developing effective biocontrol strategies against this disease vector.


Asunto(s)
Aedes , Microbiota , Mosquitos Vectores , ARN Ribosómico 16S , Aedes/microbiología , Animales , Mosquitos Vectores/microbiología , ARN Ribosómico 16S/genética , Wolbachia/genética , Wolbachia/fisiología , Wolbachia/aislamiento & purificación , Larva/microbiología , Metagenómica/métodos , México , Control de Mosquitos/métodos
2.
PLoS One ; 19(2): e0291402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38300968

RESUMEN

Due to the enormous diversity of non-culturable viruses, new viruses must be characterized using culture-independent techniques. The associated host is an important phenotypic feature that can be inferred from metagenomic viral contigs thanks to the development of several bioinformatic tools. Here, we compare the performance of recently developed virus-host prediction tools on a dataset of 1,046 virus-host pairs and then apply the best-performing tools to a metagenomic dataset derived from a highly diverse transiently hypersaline site known as the Archaean Domes (AD) within the Cuatro Ciénegas Basin, Coahuila, Mexico. Among host-dependent methods, alignment-based approaches had a precision of 66.07% and a sensitivity of 24.76%, while alignment-free methods had an average precision of 75.7% and a sensitivity of 57.5%. RaFAH, a virus-dependent alignment-based tool, had the best overall performance (F1_score = 95.7%). However, when predicting the host of AD viruses, methods based on public reference databases (such as RaFAH) showed lower inter-method agreement than host-dependent methods run against custom databases constructed from prokaryotes inhabiting AD. Methods based on custom databases also showed the greatest agreement between the source environment and the predicted host taxonomy, habitat, lifestyle, or metabolism. This highlights the value of including custom data when predicting hosts on a highly diverse metagenomic dataset, and suggests that using a combination of methods and qualitative validations related to the source environment and predicted host biology can increase the number of correct predictions. Finally, these predictions suggest that AD viruses infect halophilic archaea as well as a variety of bacteria that may be halophilic, halotolerant, alkaliphilic, thermophilic, oligotrophic, sulfate-reducing, or marine, which is consistent with the specific environment and the known geological and biological evolution of the Cuatro Ciénegas Basin and its microorganisms.


Asunto(s)
Virus , México , Filogenia , Virus/genética , Bacterias , Ecosistema
3.
PLoS One ; 18(8): e0286285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37616263

RESUMEN

Biofertilizers supply living microorganisms to help plants grow and keep their health. This study examines the microbiome composition of a commercial biofertilizer known for its plant growth-promoting activity. Using ITS and 16S rRNA gene sequence analyses, we describe the microbial communities of a biofertilizer, with 163 fungal species and 485 bacterial genera found. The biofertilizer contains a variety of microorganisms previously reported to enhance nutrient uptake, phytohormone production, stress tolerance, and pathogen resistance in plants. Plant roots created a microenvironment that boosted bacterial diversity but filtered fungal communities. Notably, preserving the fungal-inoculated substrate proves critical for keeping fungal diversity in the root fraction. We described that bacteria were more diverse in the rhizosphere than in the substrate. In contrast, root-associated fungi were less diverse than the substrate ones. We propose using plant roots as bioreactors to sustain dynamic environments that promote the proliferation of microorganisms with biofertilizer potential. The study suggests that bacteria grow close to plant roots, while root-associated fungi may be a subset of the substrate fungi. These findings show that the composition of the biofertilizer may be influenced by the selection of microorganisms associated with plant roots, which could have implications for the effectiveness of the biofertilizer in promoting plant growth. In conclusion, our study sheds light on the intricate interplay between plant roots and the biofertilizer's microbial communities. Understanding this relationship can aid in optimizing biofertilizer production and application, contributing to sustainable agricultural practices and improved crop yields.


Asunto(s)
Agricultura , Microbiota , ARN Ribosómico 16S/genética , Transporte Biológico , Reactores Biológicos , Microbiota/genética
4.
PLoS One ; 18(5): e0285978, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205698

RESUMEN

Buffelgrass (Pennisetum ciliare) is an invasive plant introduced into Mexico's Sonoran desert for cattle grazing and has converted large areas of native thorn scrub. One of the invasion mechanisms buffelgrass uses to invade is allelopathy, which consists of the production and secretion of allelochemicals that exert adverse effects on other plants' growth. The plant microbiome also plays a vital role in establishing invasive plants and host growth and development. However, little is known about the buffelgrass root-associated bacteria and the effects of allelochemicals on the microbiome. We used 16S rRNA gene amplicon sequencing to obtain the microbiome of buffelgrass and compare it between samples treated with root exacknudates and aqueous leachates as allelochemical exposure and samples without allelopathic exposure in two different periods. The Shannon diversity values were between H' = 5.1811-5.5709, with 2,164 reported bacterial Amplicon Sequence Variants (ASVs). A total of 24 phyla were found in the buffelgrass microbiome, predominantly Actinobacteria, Proteobacteria, and Acidobacteria. At the genus level, 30 different genera comprised the buffelgrass core microbiome. Our results show that buffelgrass recruits microorganisms capable of thriving under allelochemical conditions and may be able to metabolize them (e.g., Planctomicrobium, Aurantimonas, and Tellurimicrobium). We also found that the community composition of the microbiome changes depending on the developmental state of buffelgrass (p = 0.0366; ANOSIM). These findings provide new insights into the role of the microbiome in the establishment of invasive plant species and offer potential targets for developing strategies to control buffelgrass invasion.


Asunto(s)
Cenchrus , Microbiota , Pennisetum , Animales , Bovinos , Pennisetum/genética , ARN Ribosómico 16S/genética , Cenchrus/genética , Plantas/genética , Especies Introducidas
5.
Front Cell Infect Microbiol ; 13: 1118630, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816581

RESUMEN

Introduction: Recent studies have revealed the presence of N-acyl-homoserine lactones (AHLs) quorum sensing (QS) signals in the oral environment. Yet, their role in oral biofilm development remains scarcely investigated. The use of quorum quenching (QQ) strategies targeting AHLs has been described as efficient for the control of pathogenic biofilms. Here, we evaluate the use of a highly active AHL-targeting QQ enzyme, Aii20J, to modulate oral biofilm formation in vitro. Methods: The effect of the QQ enzyme was studied in in vitro multispecies biofilms generated from oral samples taken from healthy donors and patients with periodontal disease. Subgingival samples were used as inocula, aiming to select members of the microbiota of the periodontal pocket niche in the in vitro biofilms. Biofilm formation abilities and microbial composition were studied upon treating the biofilms with the QQ enzyme Aii20J. Results and Discussion: The addition of the enzyme resulted in significant biofilm mass reductions in 30 - 60% of the subgingival-derived biofilms, although standard AHLs could not be found in the supernatants of the cultured biofilms. Changes in biofilm mass were not accompanied by significant alterations of bacterial relative abundance at the genus level. The investigation of 125 oral supragingival metagenomes and a synthetic subgingival metagenome revealed a surprisingly high abundance and broad distribution of homologous of the AHL synthase HdtS and several protein families of AHL receptors, as well as an enormous presence of QQ enzymes, pointing to the existence of an intricate signaling network in oral biofilms that has been so far unreported, and should be further investigated. Together, our findings support the use of Aii20J to modulate polymicrobial biofilm formation without changing the microbiome structure of the biofilm. Results in this study suggest that AHLs or AHL-like molecules affect oral biofilm formation, encouraging the application of QQ strategies for oral health improvement, and reinforcing the importance of personalized approaches to oral biofilm control.


Asunto(s)
Enfermedades Periodontales , Percepción de Quorum , Humanos , Biopelículas , Bacterias/metabolismo , Acil-Butirolactonas/metabolismo
6.
Mol Ecol ; 32(10): 2602-2618, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35318755

RESUMEN

Subways are urban transport systems with high capacity. Every day around the world, there are more than 150 million subway passengers. Since 2013, thousands of microbiome samples from various subways worldwide have been sequenced. Skin bacteria and environmental organisms dominate the subway microbiomes. The literature has revealed common bacterial groups in subway systems; even so, it is possible to identify cities by their microbiome. Low frequency bacteria are responsible for specific bacterial fingerprints of each subway system. Furthermore, daily subway commuters leave their microbial clouds and interact with other passengers. Microbial exchange is quite fast; the hand microbiome changes within minutes, and after cleaning the handrails, the bacteria are re-established within minutes. To investigate new taxa and metabolic pathways of subway microbial communities, several high-quality metagenomic-assembled genomes (MAG) have been described. Subways are harsh environments unfavorable for microorganism growth. However, recent studies have observed a wide diversity of viable and metabolically active bacteria. Understanding which bacteria are living, dormant, or dead allows us to propose realistic ecological interactions. Questions regarding the relationship between humans and the subway microbiome, particularly the microbiome effects on personal and public health, remain unanswered. This review summarizes our knowledge of subway microbiomes and their relationship with passenger microbiomes.


Asunto(s)
Microbiota , Vías Férreas , Humanos , Microbiota/genética , Metagenoma , Ciudades , Bacterias/genética
7.
Microorganisms ; 10(4)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456844

RESUMEN

Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.

8.
Sci Total Environ ; 805: 150136, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818799

RESUMEN

Arid zones contain a diverse set of microbes capable of survival under dry conditions, some of which can form relationships with plants under drought stress conditions to improve plant health. We studied squash (Cucurbita pepo L.) root microbiome under historically arid and humid sites, both in situ and performing a common garden experiment. Plants were grown in soils from sites with different drought levels, using in situ collected soils as the microbial source. We described and analyzed bacterial diversity by 16S rRNA gene sequencing (N = 48) from the soil, rhizosphere, and endosphere. Proteobacteria were the most abundant phylum present in humid and arid samples, while Actinobacteriota abundance was higher in arid ones. The ß-diversity analyses showed split microbiomes between arid and humid microbiomes, and aridity and soil pH levels could explain it. These differences between humid and arid microbiomes were maintained in the common garden experiment, showing that it is possible to transplant in situ diversity to the greenhouse. We detected a total of 1009 bacterial genera; 199 exclusively associated with roots under arid conditions. By 16S and shotgun metagenomics, we identified dry-associated taxa such as Cellvibrio, Ensifer adhaerens, and Streptomyces flavovariabilis. With shotgun metagenomic sequencing of rhizospheres (N = 6), we identified 2969 protein families in the squash core metagenome and found an increased number of exclusively protein families from arid (924) than humid samples (158). We found arid conditions enriched genes involved in protein degradation and folding, oxidative stress, compatible solute synthesis, and ion pumps associated with osmotic regulation. Plant phenotyping allowed us to correlate bacterial communities with plant growth. Our study revealed that it is possible to evaluate microbiome diversity ex-situ and identify critical species and genes involved in plant-microbe interactions in historically arid locations.


Asunto(s)
Cucurbita , Microbiota , Rhizobiaceae , Humanos , Metagenoma , Metagenómica , Raíces de Plantas , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , Streptomyces
9.
Sci Rep ; 11(1): 13848, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226571

RESUMEN

Metagenomic and traditional paleolimnological approaches are suitable to infer past biological and environmental changes, however, they are often applied independently, especially in tropical regions. We combined both approaches to investigate Holocene Prokaryote and Eukaryote diversity and microbial metabolic pathways in ancient Lake Chalco, Mexico. Here, we report on diversity among a large number of lineages (36,722 OTUs) and functional diversity (27,636,243 non-clustered predicted proteins, and 6,144 annotated protein-family genes). The most abundant domain is Bacteria (81%), followed by Archaea (15%) and Eukarya (3%). We also determined the diversity of protein families and their relationship to metabolic pathways. The early Holocene (> 11,000 cal years BP) lake was characterized by cool, freshwater conditions, which later became warmer and hyposaline (11,000-6,000 cal years BP). We found high abundances of cyanobacteria, and fungi groups associated with mature forests in these sediments. Bacteria and Archaea include mainly anaerobes and extremophiles that are involved in the sulfur, nitrogen, and carbon cycles. We found evidence for early human impacts, including landscape modifications and lake eutrophication, which began ~ 6,000 cal years BP. Subsaline, temperate conditions were inferred for the past 5,000 years. Finally, we found nitrogen-fixing bacteria and protein-family genes that are linked to contaminated environments, as well as several fungal pathogens of crops in near-surface sediments.


Asunto(s)
Archaea/genética , Bacterias/genética , Lagos/microbiología , Microbiota/genética , Ciclo del Carbono/genética , Sedimentos Geológicos/microbiología , Humanos , Metagenoma/genética , México , Nitrógeno/metabolismo , Filogenia , Clima Tropical
10.
Microbiol Res ; 247: 126732, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33743500

RESUMEN

Mining operations often generate tailing dams that contain toxic residues and are a source of contamination when left unconfined. The establishment of a plant community over the tailings has been proposed as a containment strategy known as phytostabilization. Previously, we described naturally occurring mine tailing colonizing plants such as Acacia farnesiana, Brickellia coulteri, Baccharis sarothroides, and Gnaphalium leucocephalum without finding local adaptation. We explored the rhizosphere microbes as contributors in plant establishment and described both the culturable and in situ diversity of rhizospheric bacteria using the 16S rRNA gene and metagenomic shotgun sequencing. We built a synthetic community (SC) of culturable rhizosphere bacteria from the mine tailings. The SC was then the foundation for a serial passes experiment grown in plant-derived nutrient sources, selecting for heavy metals tolerance, community cooperation, and competition. The outcome of the serial passes was named the 'final synthetic community' (FSC). Overall, diversity decreased from in situ uncultivable microbes from roots (399 bacteria genera) to the cultivated communities (291 genera), the SC (94 genera), and the lowest diversity was in the FSC (43 genera). Metagenomic diversity clustered into 94,245 protein families, where we found plant growth promotion-related genes such as the csgBAC and entCEBAH, coded in a metagenome-assembled genome named Kosakonia sp. Nacozari. Finally, we used the FSC to inoculate mine tailing colonizing plants in a greenhouse experiment. The plants with the FSC inocula observed higher relative plant growth rates in sterile substrates. The FSC presents promising features that might make it useful for phytostabilization tailored strategies.


Asunto(s)
Metagenómica , Plantas/microbiología , Rizosfera , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Metales Pesados , Microbiota/fisiología , Minería , Desarrollo de la Planta , Raíces de Plantas , ARN Ribosómico 16S , Suelo , Contaminantes del Suelo
11.
Front Microbiol ; 11: 542742, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162946

RESUMEN

The two-step model for plant root microbiomes considers soil as the primary microbial source. Active selection of the plant's bacterial inhabitants results in a biodiversity decrease toward roots. We collected sixteen samples of in situ ruderal plant roots and their soils and used these soils as the main microbial input for single genotype tomatoes grown in a greenhouse. Our main goal was to test the soil influence in the structuring of rhizosphere microbiomes, minimizing environmental variability, while testing multiple plant species. We massively sequenced the 16S rRNA and shotgun metagenomes of the soils, in situ plants, and tomato roots. We identified a total of 271,940 bacterial operational taxonomic units (OTUs) within the soils, rhizosphere and endospheric microbiomes. We annotated by homology a total of 411,432 (13.07%) of the metagenome predicted proteins. Tomato roots did follow the two-step model with lower α-diversity than soil, while ruderal plants did not. Surprisingly, ruderal plants are probably working as a microenvironmental oasis providing moisture and plant-derived nutrients, supporting larger α-diversity. Ruderal plants and their soils are closer according to their microbiome community composition than tomato and its soil, based on OTUs and protein comparisons. We expected that tomato ß-diversity clustered together with their soil, if it is the main rhizosphere microbiome structuring factor. However, tomato microbiome ß-diversity was associated with plant genotype in most samples (81.2%), also supported by a larger set of enriched proteins in tomato rhizosphere than soil or ruderals. The most abundant bacteria found in soils was the Actinobacteria Solirubrobacter soli, ruderals were dominated by the Proteobacteria Sphingomonas sp. URGHD0057, and tomato mainly by the Bacteroidetes Ohtaekwangia koreensis, Flavobacterium terrae, Niastella vici, and Chryseolinea serpens. We calculated a metagenomic tomato root core of 51 bacterial genera and 2,762 proteins, which could be the basis for microbiome-oriented plant breeding programs. We attributed a larger diversity in ruderal plants roots exudates as an effect of the moisture and nutrient acting as a microbial harbor. The tomato and ruderal metagenomic differences are probably due to plant domestication trade-offs, impacting plant-bacteria interactions.

12.
Microbiol Res ; 241: 126593, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33045640

RESUMEN

The biggest non-tree perennial plant species endemic to Mexico were called metl in the Nahua culture; during colonial times, renamed with the Antillean word maguey. Carl von Linné finally renamed them as Agave, a Greek-Latin root word meaning admirable. Since pre-Columbian times, one of the major products obtained from some Agave species is the fermented beverage called pulque or octli. This beverage represents an ancient biotechnological development obtained by the natural fermentation of mead from such plants. Pulque played a central role in Mexican pre-Columbian cultures, while in recent times, there has been a renewed interest in it, due to its high content in nutrients and probiotics. In this study, we used massive sequencing of the 16S rRNA gene and the ribosomal internal transcribed spacer (ITS) to profile the pulque microbiome. We identified 2,855 bacteria operational taxonomic units (OTUs) and 1,494 fungi species in the pulque fermentation. Our results provide the most diverse catalog of microbes during pulque production reported so far. These findings allowed us to identify previously unidentified and core microbes resilient during pulque production, with the potential to be used as fermentation stage biomarkers. We confirmed previous reports of pulque microbes and discovered new ones like the bacteria Sphingomonas and Weisella. Among fungi we found that Saccharomyces cerevisiae was second to Candida zemplina in the studied pulque samples.


Asunto(s)
Agave/microbiología , Bebidas Alcohólicas/microbiología , Bacterias/clasificación , Alimentos Fermentados/microbiología , Hongos/clasificación , Bacterias/genética , Biodiversidad , ADN Intergénico/genética , Hongos/genética , México , Microbiota/genética , Probióticos , ARN Ribosómico 16S/genética
13.
PLoS One ; 15(8): e0237272, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32813719

RESUMEN

Interaction between hands and the environment permits the interchange of microorganisms. The Mexico City subway is used daily by millions of passengers that get in contact with its surfaces. In this study, we used 16S rRNA gene sequencing to characterize the microbiomes of frequently touched surfaces and compare regular and women-only wagons. We also explored the effect of surface cleaning on microbial resettling. Finally, we studied passenger behavior and characterized microbial changes after traveling. Most passengers (99%), showed some type of surface interaction during a wagon trip, mostly with the hands (92%). We found microbiome differences associated with surfaces, probably reflecting diverse surface materials and usage frequency. The platform floor was the most bacterial diverse surface, while the stair handrail and pole were the least diverse ones. After pole cleaning, the resettling of microbial diversity was fast (5-30 minutes); however, it did not resemble the initial composition. After traveling, passengers significantly increased their hand microbial diversity and converged to a similar microbial composition among passengers. Additionally, passenger hand microbiomes resembled subway surfaces in diversity. However, microbial fingerprints were preserved within passengers after traveling.


Asunto(s)
Mano/microbiología , Microbiota , Vías Férreas , Adulto , Anciano , Bacterias/genética , Bacterias/aislamiento & purificación , Ciudades , Aglomeración , Femenino , Humanos , Masculino , México , Persona de Mediana Edad , Propiedades de Superficie , Tacto
14.
Elife ; 92020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31989922

RESUMEN

Several universal genomic traits affect trade-offs in the capacity, cost, and efficiency of the biochemical information processing that underpins metabolism and reproduction. We analyzed the role of these traits in mediating the responses of a planktonic microbial community to nutrient enrichment in an oligotrophic, phosphorus-deficient pond in Cuatro Ciénegas, Mexico. This is one of the first whole-ecosystem experiments to involve replicated metagenomic assessment. Mean bacterial genome size, GC content, total number of tRNA genes, total number of rRNA genes, and codon usage bias in ribosomal protein sequences were all higher in the fertilized treatment, as predicted on the basis of the assumption that oligotrophy favors lower information-processing costs whereas copiotrophy favors higher processing rates. Contrasting changes in trait variances also suggested differences between traits in mediating assembly under copiotrophic versus oligotrophic conditions. Trade-offs in information-processing traits are apparently sufficiently pronounced to play a role in community assembly because the major components of metabolism-information, energy, and nutrient requirements-are fine-tuned to an organism's growth and trophic strategy.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Ecosistema , Genoma Bacteriano/genética , Metagenoma/genética , Composición de Base/genética , Uso de Codones/genética , Fertilizantes , México , Plancton/genética , Plancton/metabolismo , Plancton/microbiología , Estanques/microbiología , Biosíntesis de Proteínas/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
15.
PeerJ ; 6: e6233, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30656069

RESUMEN

BACKGROUND: The Streptococcus genus is relevant to both public health and food safety because of its ability to cause pathogenic infections. It is well-represented (>100 genomes) in publicly available databases. Streptococci are ubiquitous, with multiple sources of isolation, from human pathogens to dairy products. The Streptococcus genus has traditionally been classified by morphology, serum types, the 16S ribosomal RNA (rRNA) gene, and multi-locus sequence types subject to in-depth comparative genomic analysis. METHODS: Core and pan-genomes described the genomic diversity of 108 strains belonging to 16 Streptococcus species. The core genome nucleotide diversity was calculated and compared to phylogenomic distances within the genus Streptococcus. The core genome was also used as a resource to recruit metagenomic fragment reads from streptococci dominated environments. A conventional 16S rRNA gene phylogeny reconstruction was used as a reference to compare the resulting dendrograms of average nucleotide identity (ANI) and genome similarity score (GSS) dendrograms. RESULTS: The core genome, in this work, consists of 404 proteins that are shared by all 108 Streptococcus. The average identity of the pairwise compared core proteins decreases proportionally to GSS lower scores, across species. The GSS dendrogram recovers most of the clades in the 16S rRNA gene phylogeny while distinguishing between 16S polytomies (unresolved nodes). The GSS is a distance metric that can reflect evolutionary history comparing orthologous proteins. Additionally, GSS resulted in the most useful metric for genus and species comparisons, where ANI metrics failed due to false positives when comparing different species. DISCUSSION: Understanding of genomic variability and species relatedness is the goal of tools like GSS, which makes use of the maximum pairwise shared orthologous sequences for its calculation. It allows for long evolutionary distances (above species) to be included because of the use of amino acid alignment scores, rather than nucleotides, and normalizing by positive matches. Newly sequenced species and strains could be easily placed into GSS dendrograms to infer overall genomic relatedness. The GSS is not restricted to ubiquitous conservancy of gene features; thus, it reflects the mosaic-structure and dynamism of gene acquisition and loss in bacterial genomes.

17.
Sci Rep ; 8(1): 12712, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30140076

RESUMEN

Microbiomes influence plant establishment, development, nutrient acquisition, pathogen defense, and health. Plant microbiomes are shaped by interactions between the microbes and a selection process of host plants that distinguishes between pathogens, commensals, symbionts and transient bacteria. In this work, we explore the microbiomes through massive sequencing of the 16S rRNA genes of microbiomes two Marchantia species of liverworts. We compared microbiomes from M. polymorpha and M. paleacea plants collected in the wild relative to their soils substrates and from plants grown in vitro that were established from gemmae obtained from the same populations of wild plants. Our experimental setup allowed identification of microbes found in both native and in vitro Marchantia species. The main OTUs (97% identity) in Marchantia microbiomes were assigned to the following genera: Methylobacterium, Rhizobium, Paenibacillus, Lysobacter, Pirellula, Steroidobacter, and Bryobacter. The assigned genera correspond to bacteria capable of plant-growth promotion, complex exudate degradation, nitrogen fixation, methylotrophs, and disease-suppressive bacteria, all hosted in the relatively simple anatomy of the plant. Based on their long evolutionary history Marchantia is a promising model to study not only long-term relationships between plants and their microbes but also the transgenerational contribution of microbiomes to plant development and their response to environmental changes.


Asunto(s)
Bacterias , Interacciones Microbiota-Huesped/genética , Marchantia/microbiología , Microbiota/genética , ARN Ribosómico 16S/genética , Simbiosis/genética , Bacterias/clasificación , Bacterias/genética , Filogenia , Análisis de Secuencia de ARN/métodos , Microbiología del Suelo
18.
Genome Announc ; 6(17)2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700165

RESUMEN

We assembled the complete genome sequences of Bacillus pumilus strains 145 and 150a from Cuatrociénegas, Mexico. We detected genes codifying for proteins potentially involved in antagonism (bacteriocins) and defense mechanisms (abortive infection bacteriophage proteins and 4-azaleucine resistance). Both strains harbored prophage sequences. Our results provide insights into understanding the establishment of microbial interactions.

19.
PLoS One ; 12(12): e0189271, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29228055

RESUMEN

Sugarcane is one of the most important crops worldwide and is a key plant for the global production of sucrose. Sugarcane cultivation is severely affected by drought stress and it is considered as the major limiting factor for their productivity. In recent years, this plant has been subjected to intensive research focused on improving its resilience against water scarcity; particularly the molecular mechanisms in response to drought stress have become an underlying issue for its improvement. To better understand water stress and the molecular mechanisms we performed a de novo transcriptomic assembly of sugarcane (var. Mex 69-290). A total of 16 libraries were sequenced in a 2x100 bp configuration on a HiSeq-Illumina platform. A total of 536 and 750 genes were differentially up-regulated along with the stress treatments for leave and root tissues respectively, while 1093 and 531 genes were differentially down-regulated in leaves and roots respectively. Gene Ontology functional analysis showed that genes related to response of water deprivation, heat, abscisic acid, and flavonoid biosynthesis were enriched during stress treatment in our study. The reliability of the observed expression patterns was confirmed by RT-qPCR. Additionally, several physiological parameters of sugarcane were significantly affected due to stress imposition. The results of this study may help identify useful target genes and provide tissue-specific data set of genes that are differentially expressed in response to osmotic stress, as well as a complete analysis of the main groups is significantly enriched under this condition. This study provides a useful benchmark for improving drought tolerance in sugarcane and other economically important grass species.


Asunto(s)
Perfilación de la Expresión Génica , Saccharum/genética , Transcripción Genética , Presión Osmótica , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
20.
Genome Announc ; 5(36)2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28883139

RESUMEN

Four extensively drug-resistant Pseudomonas aeruginosa strains, isolated from patients with pneumonia, were sequenced using PacBio RS-II single-molecule real-time (SMRT) technology. Genome sequence analysis identified great variability among mobile genetic elements, as well as some previously undescribed genomic islands and new variants of class 1 integrons (In1402, In1403, In1404, and In1408).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...