Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Nat Med ; 30(5): 1284-1291, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38710950

RESUMEN

This study aimed to evaluate the impact of APOE4 homozygosity on Alzheimer's disease (AD) by examining its clinical, pathological and biomarker changes to see whether APOE4 homozygotes constitute a distinct, genetically determined form of AD. Data from the National Alzheimer's Coordinating Center and five large cohorts with AD biomarkers were analyzed. The analysis included 3,297 individuals for the pathological study and 10,039 for the clinical study. Findings revealed that almost all APOE4 homozygotes exhibited AD pathology and had significantly higher levels of AD biomarkers from age 55 compared to APOE3 homozygotes. By age 65, nearly all had abnormal amyloid levels in cerebrospinal fluid, and 75% had positive amyloid scans, with the prevalence of these markers increasing with age, indicating near-full penetrance of AD biology in APOE4 homozygotes. The age of symptom onset was earlier in APOE4 homozygotes at 65.1, with a narrower 95% prediction interval than APOE3 homozygotes. The predictability of symptom onset and the sequence of biomarker changes in APOE4 homozygotes mirrored those in autosomal dominant AD and Down syndrome. However, in the dementia stage, there were no differences in amyloid or tau positron emission tomography across haplotypes, despite earlier clinical and biomarker changes. The study concludes that APOE4 homozygotes represent a genetic form of AD, suggesting the need for individualized prevention strategies, clinical trials and treatments.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Biomarcadores , Homocigoto , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/líquido cefalorraquídeo , Apolipoproteína E4/genética , Anciano , Masculino , Femenino , Biomarcadores/líquido cefalorraquídeo , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Anciano de 80 o más Años , Proteínas tau/genética , Proteínas tau/líquido cefalorraquídeo , Edad de Inicio , Apolipoproteína E3/genética , Estudios de Cohortes , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Amiloide/genética
2.
Alzheimers Dement ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644660

RESUMEN

BACKGROUND: Cortical microinfarcts (CMI) were attributed to cerebrovascular disease and cerebral amyloid angiopathy (CAA). CAA is frequent in Down syndrome (DS) while hypertension is rare, yet no studies have assessed CMI in DS. METHODS: We included 195 adults with DS, 63 with symptomatic sporadic Alzheimer's disease (AD), and 106 controls with 3T magnetic resonance imaging. We assessed CMI prevalence in each group and CMI association with age, AD clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition in DS. RESULTS: CMI prevalence was 11.8% in DS, 4.7% in controls, and 17.5% in sporadic AD. In DS, CMI increased in prevalence with age and the AD clinical continuum, was clustered in the parietal lobes, and was associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. DISCUSSION: In DS, CMI are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic CAA phenotype. HIGHLIGHTS: This is the first study to assess cortical microinfarcts (assessed with 3T magnetic resonance imaging) in adults with Down syndrome (DS). We studied the prevalence of cortical microinfarcts in DS and its relationship with age, the Alzheimer's disease (AD) clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition. The prevalence of cortical microinfarcts was 11.8% in DS and increased with age and along the AD clinical continuum. Cortical microinfarcts were clustered in the parietal lobes, and were associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. In DS, cortical microinfarcts are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic phenotype of cerebral amyloid angiopathy.

3.
JAMA Neurol ; 81(3): 255-263, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252443

RESUMEN

Importance: Phosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer disease (AD) pathology, with p-tau217 considered to have the most utility. However, availability of p-tau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. Objective: To determine the utility of a novel and commercially available immunoassay for plasma p-tau217 to detect AD pathology and evaluate reference ranges for abnormal amyloid ß (Aß) and longitudinal change across 3 selected cohorts. Design, Setting, and Participants: This cohort study examined data from 3 single-center observational cohorts: cross-sectional and longitudinal data from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort (visits October 2017-August 2021) and Wisconsin Registry for Alzheimer's Prevention (WRAP) cohort (visits February 2007-November 2020) and cross-sectional data from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort (baseline visits March 2009-November 2021). Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023. Exposures: Magnetic resonance imaging, Aß positron emission tomography (PET), tau PET, cerebrospinal fluid (CSF) biomarkers (Aß42/40 and p-tau immunoassays), and plasma p-tau217 (ALZpath pTau217 assay). Main Outcomes and Measures: Accuracy of plasma p-tau217 in detecting abnormal amyloid and tau pathology, longitudinal p-tau217 change according to baseline pathology status. Results: The study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%] and 282 males [35.9%]). High accuracy was observed in identifying elevated Aß (area under the curve [AUC], 0.92-0.96; 95% CI, 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95% CI, 0.84-0.99) across all cohorts. These accuracies were comparable with CSF biomarkers in determining abnormal PET signal. The detection of abnormal Aß pathology using a 3-range reference yielded reproducible results and reduced confirmatory testing by approximately 80%. Longitudinally, plasma p-tau217 values showed an annual increase only in Aß-positive individuals, with the highest increase observed in those with tau positivity. Conclusions and Relevance: This study found that a commercially available plasma p-tau217 immunoassay accurately identified biological AD, comparable with results using CSF biomarkers, with reproducible cut-offs across cohorts. It detected longitudinal changes, including at the preclinical stage.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Amiloide , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores , Estudios de Cohortes , Estudios Transversales , Inmunoensayo , Tomografía de Emisión de Positrones , Proteínas tau/líquido cefalorraquídeo , Estudios Observacionales como Asunto
4.
Neurology ; 101(23): e2434-e2447, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37827850

RESUMEN

BACKGROUND AND OBJECTIVES: There is an urgent need to identify novel noninvasive biomarkers for Alzheimer disease (AD) diagnosis. Recent advances in blood-based measurements of phosphorylated tau (pTau) species are promising but still insufficient to address clinical needs. Epigenetics has been shown to be helpful to better understand AD pathogenesis. Epigenetic biomarkers have been successfully implemented in other medical disciplines, such as oncology. The objective of this study was to explore the diagnostic accuracy of a blood-based DNA methylation marker panel as a noninvasive tool to identify patients with late-onset Alzheimer compared with age-matched controls. METHODS: A case-control study was performed. Blood DNA methylation levels at 46 cytosine-guanine sites (21 genes selected after a comprehensive literature search) were measured by bisulfite pyrosequencing in patients with "probable AD dementia" following National Institute on Aging and the Alzheimer's Association guidelines (2011) and age-matched and sex-matched controls recruited at Neurology Department-University Hospital of Navarre, Spain, selected by convenience sampling. Plasma pTau181 levels were determined by Simoa technology. Multivariable logistic regression analysis was performed to explore the optimal model to discriminate patients with AD from controls. Furthermore, we performed a stratified analysis by sex. RESULTS: The final study cohort consisted of 80 patients with AD (age: median [interquartile range] 79 [11] years; 58.8% female) and 100 cognitively healthy controls (age 77 [10] years; 58% female). A panel including DNA methylation levels at NXN, ABCA7, and HOXA3 genes and plasma pTau181 significantly improved (area under the receiver operating characteristic curve 0.93, 95% CI 0.89-0.97) the diagnostic performance of a single pTau181-based model, adjusted for age, sex, and APOE ɛ4 genotype. The sensitivity and specificity of this panel were 83.30% and 90.00%, respectively. After sex-stratified analysis, HOXA3 DNA methylation levels showed consistent association with AD. DISCUSSION: These results highlight the potential translational value of blood-based DNA methylation biomarkers for noninvasive diagnosis of AD. REGISTRATION INFORMATION: Research Ethics Committee of the University Hospital of Navarre (PI17/02218).


Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Anciano , Masculino , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Metilación de ADN/genética , Estudios de Casos y Controles , Biomarcadores , Genotipo , Proteínas tau/genética , Péptidos beta-Amiloides/genética
5.
Genome Med ; 15(1): 79, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794492

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified several risk loci, but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously demonstrated that six CSF biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD pathophysiology, and (3) explore potential sex differences. METHODS: We performed GWAS for each of the five biomarker PCs in two multi-center studies (EMIF-AD and ADNI). In total, 973 participants (n = 205 controls, n = 546 mild cognitive impairment, n = 222 AD) were analyzed for 7,433,949 common SNPs and 19,511 protein-coding genes. Structural equation models tested whether biomarker PCs mediate genetic risk effects on AD, and stratified and interaction models probed for sex-specific effects. RESULTS: Five loci showed genome-wide significant association with CSF profiles, two were novel (rs145791381 [inflammation] and GRIN2D [synaptic functioning]) and three were previously described (APOE, TMEM106B, and CHI3L1). Follow-up analyses of the two novel signals in independent datasets only supported the GRIN2D locus, which contains several functionally interesting candidate genes. Mediation tests indicated that variants in APOE are associated with AD status via processes related to amyloid and tau pathology, while markers in TMEM106B and CHI3L1 are associated with AD only via neuronal injury/inflammation. Additionally, seven loci showed sex-specific associations with AD biomarkers. CONCLUSIONS: These results suggest that pathway and sex-specific analyses can improve our understanding of AD genetics and may contribute to precision medicine.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Estudio de Asociación del Genoma Completo , Proteínas tau/genética , Biomarcadores , Inflamación , Apolipoproteínas E/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-37898567

RESUMEN

Core Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers have shown incomplete agreement with amyloid-positron emission tomography (PET). Our goal was to analyze the agreement between AD CSF biomarkers and amyloid-PET in a multicenter study. Retrospective multicenter study (5 centers). Participants who underwent both CSF biomarkers and amyloid-PET scan within 18 months were included. Clinical diagnoses were made according to latest diagnostic criteria by the attending clinicians. CSF Amyloid Beta1-42 (Aß1-42, A), phosphorliated tau 181 (pTau181, T) and total tau (tTau, N) biomarkers were considered normal (-) or abnormal ( +) according to cutoffs of each center. Amyloid-PET was visually classified as positive/negative. Agreement between CSF biomarkers and amyloid-PET was analyzed by overall percent agreement (OPA). 236 participants were included (mean age 67.9 years (SD 9.1), MMSE score 24.5 (SD 4.1)). Diagnoses were mild cognitive impairment or dementia due to AD (49%), Lewy body dementia (22%), frontotemporal dementia (10%) and others (19%). Mean time between tests was 5.1 months (SD 4.1). OPA between single CSF biomarkers and amyloid-PET was 74% for Aß1-42, 75% for pTau181, 73% for tTau. The use of biomarker ratios improved OPA: 87% for Aß1-42/Aß1-40 (n = 155), 88% for pTau181/Aß1-42 (n = 94) and 82% for tTau/Aß1-42 (n = 160). A + T + N + cases showed the highest agreement between CSF biomarkers and amyloid-PET (96%), followed by A-T-N- cases (89%). Aß1-42/Aß1-40 was a better marker of cerebral amyloid deposition, as identified by amyloid tracers, than Aß1-42 alone. Combined biomarkers in CSF predicted amyloid-PET result better than single biomarkers.

7.
Alzheimers Res Ther ; 15(1): 186, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898760

RESUMEN

BACKGROUND: Synapse loss is an early event that precedes neuronal death and symptom onset and is considered the best neuropathological correlate of cognitive decline in Alzheimer's disease (AD). Vesicle-associated membrane protein 2 (VAMP-2) has emerged as a promising biomarker of AD-related synapse degeneration in cerebrospinal fluid (CSF). The aim of this study was to explore the CSF profile of VAMP-2 across the AD continuum in relation to core AD biomarkers, other synaptic proteins, neurogranin (Ng) and synaptosomal-associated Protein-25 kDa (SNAP-25) and cognitive performance. METHODS: We developed a digital immunoassay on the Single Molecule Array platform to quantify VAMP-2 in CSF and used existing immunoassays to quantify Ng, SNAP-25 and core CSF AD biomarkers. The clinical study included 62 cognitively unimpaired AD biomarker-negative subjects and 152 participants across the AD continuum from the SPIN cohort (Sant Pau Initiative on Neurodegeneration). Cognitive measures of episodic, semantic, executive and visuospatial domains and global cognition were included. Statistical methods included χ2 tests, spearman correlation, and ANCOVA analyses. RESULTS: The VAMP-2 assay had a good analytical performance (repeatability 8.9%, intermediate precision 10.3%). Assay antibodies detected native VAMP-2 protein in human brain homogenates. CSF concentrations of VAMP-2, neurogranin and SNAP-25 were lower in preclinical AD stage 1 compared to controls and higher at later AD stages compared to AD stage 1 and were associated with core AD biomarkers, particularly total tau (adj. r2 = 0.62 to 0.78, p < 0.001). All three synaptic proteins were associated with all cognitive domains in individuals on the AD continuum (adj. r2 = 0.04 to 0.19, p < 0.05). CONCLUSIONS: Our novel digital immunoassay accurately measures VAMP-2 changes in CSF, which reflect AD biomarkers and cognitive performance across multiple domains.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico , Neurogranina/líquido cefalorraquídeo , Vesículas Sinápticas/patología , Proteínas tau/líquido cefalorraquídeo , Proteína 2 de Membrana Asociada a Vesículas
8.
Nat Commun ; 14(1): 5635, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704597

RESUMEN

Diagnosis of dementia with Lewy bodies (DLB) is challenging and specific biofluid biomarkers are highly needed. We employed proximity extension-based assays to measure 665 proteins in the cerebrospinal fluid (CSF) from patients with DLB (n = 109), Alzheimer´s disease (AD, n = 235) and cognitively unimpaired controls (n = 190). We identified over 50 CSF proteins dysregulated in DLB, enriched in myelination processes among others. The dopamine biosynthesis enzyme DDC was the strongest dysregulated protein, and could efficiently discriminate DLB from controls and AD (AUC:0.91 and 0.81 respectively). Classification modeling unveiled a 7-CSF biomarker panel that better discriminate DLB from AD (AUC:0.93). A custom multiplex panel for six of these markers (DDC, CRH, MMP-3, ABL1, MMP-10, THOP1) was developed and validated in independent cohorts, including an AD and DLB autopsy cohort. This DLB CSF proteome study identifies DLB-specific protein changes and translates these findings to a practicable biomarker panel that accurately identifies DLB patients, providing promising diagnostic and clinical trial testing opportunities.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad por Cuerpos de Lewy/diagnóstico , Proteoma , Autopsia , Biomarcadores
9.
Alzheimers Dement (Amst) ; 15(3): e12456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502019

RESUMEN

INTRODUCTION: Our previous antibody-based cerebrospinal fluid (CSF) proteomics study showed that Thimet oligopeptidase (THOP1), an amyloid beta (Aß) neuropeptidase, was increased in mild cognitive impairment with amyloid pathology (MCI-Aß+) and Alzheimer's disease (AD) dementia compared with controls and dementia with Lewy bodies (DLB), highlighting the potential of CSF THOP1 as an early specific biomarker for AD. We aimed to develop THOP1 immunoassays for large-scale analysis and validate our proteomics findings in two independent cohorts. METHODS: We developed in-house CSF THOP1 immunoassays on automated Ella and Simoa platforms. The performance of the different assays were compared using Passing-Bablok regression analysis in a subset of CSF samples from the discovery cohort (n = 72). Clinical validation was performed in two independent cohorts (cohort 1: n = 200; cohort 2: n = 165) using the Ella platform. RESULTS: THOP1 concentrations moderately correlated between proteomics analysis and our novel assays (Rho > 0.580). In both validation cohorts, CSF THOP1 was increased in MCI-Aß+ (>1.3-fold) and AD (>1.2-fold) compared with controls; and between MCI-Aß+ and DLB (>1.2-fold). Higher THOP1 concentrations were detected in AD compared with DLB only when both cohorts were analyzed together. In both cohorts, THOP1 correlated with CSF total tau (t-tau), phosphorylated tau (p-tau), and Aß40 (Rho > 0.540) but not Aß42. DISCUSSION: Validation of our proteomics findings underpins the potential of CSF THOP1 as an early specific biomarker associated with AD pathology. The use of antibody-based platforms in both the discovery and validation phases facilitated the translation of proteomics findings, providing an additional workflow that may accelerate the development of biofluid-based biomarkers.

10.
medRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37502842

RESUMEN

Importance: Phosphorylated tau (pTau) is a specific blood biomarker for Alzheimer's disease (AD) pathology, with pTau217 considered to have the most utility. However, availability of pTau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. Objective: To determine the utility of a novel and commercially available Single molecule array (Simoa) for plasma pTau217 (ALZpath) to detect AD pathology. To evaluate references ranges for abnormal Aß across three selected cohorts. Design Setting Participants: Three single-centre observational cohorts were involved in the study: Translational Biomarkers in Aging and Dementia (TRIAD), Wisconsin Registry for Alzheimer's Prevention (WRAP), and Sant Pau Initiative on Neurodegeneration (SPIN). MRI, Aß-PET, and tau-PET data were available for TRIAD and WRAP, while CSF biomarkers were additionally measured in a subset of TRIAD and SPIN. Plasma measurements of pTau181, pTau217 (ALZpath), pTau231, Aß42/40, GFAP, and NfL, were available for all cohorts. Longitudinal blood biomarker data spanning 3 years for TRIAD and 8 years for WRAP were included. Exposures: MRI, Aß-PET, tau-PET, CSF biomarkers (Aß42/40 and pTau immunoassays) and plasma pTau217 (ALZpath Simoa). Main Outcomes and Measures: The accuracy of plasma pTau217 for detecting abnormal amyloid and tau pathology. Longitudinal pTau217 change according to baseline pathology status. Results: The study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%]) were included in the study. High accuracy was observed in identifying elevated Aß (AUC, 0.92-0.96; 95%CI 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95%CI 0.84-0.99) across all cohorts. These accuracies were significantly higher than other plasma biomarker combinations and comparable to CSF biomarkers. The detection of abnormal Aß pathology using binary or three-range references yielded reproducible results. Longitudinally, plasma pTau217 showed an annual increase only in Aß-positive individuals, with the highest increase observed in those with tau-positivity. Conclusions and Relevance: The ALZpath plasma pTau217 Simoa assay accurately identifies biological AD, comparable to CSF biomarkers, with reproducible cut-offs across cohorts. It detects longitudinal changes, including at the preclinical stage, and is the first widely available, accessible, and scalable blood test for pTau217 detection.

11.
Mov Disord Clin Pract ; 10(6): 980-986, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37332651

RESUMEN

Background: There is a need to better understand the rate of cognitive and motor decline of Dementia with Lewy bodies (DLB) and Parkinson's disease Dementia (PDD). Objectives: To compare the rate of cognitive and motor decline in patients with DLB and PDD from the E-DLB Consortium and the Parkinson's Incidence Cohorts Collaboration (PICC) Cohorts. Methods: The annual change in MMSE and MDS-UPDRS part III was estimated using linear mixed regression models in patients with at least one follow-up (DLB n = 837 and PDD n = 157). Results: When adjusting for confounders, we found no difference in the annual change in MMSE between DLB and PDD (-1.8 [95% CI -2.3, -1.3] vs. -1.9 [95% CI -2.6, -1.2] [P = 0.74]). MDS-UPDRS part III showed nearly identical annual changes (DLB 4.8 [95% CI 2.1, 7.5]) (PDD 4.8 [95% CI 2.7, 6.9], [P = 0.98]). Conclusions: DLB and PDD showed similar rates of cognitive and motor decline. This is relevant for future clinical trial designs.

13.
Clin Chem Lab Med ; 61(9): 1580-1589, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37083158

RESUMEN

OBJECTIVES: Alzheimer's disease (AD) is considered the most common cause of dementia in older people. Recently, blood-based markers (BBM) Aß1-42, Aß1-40, and phospho Tau181 (p-Tau181) have demonstrated the potential to transform the diagnosis and prognostic assessment of AD. Our aim was to investigate the effect of different storage conditions on the quantification of these BBM and to evaluate the interchangeability of plasma and serum samples. METHODS: Forty-two individuals with some degree of cognitive impairment were studied. Thirty further patients were retrospectively selected. Aß1-42, Aß1-40, and p-Tau181 were quantified using the LUMIPULSE-G600II automated platform. To assess interchangeability between conditions, correction factors for magnitudes that showed strong correlations were calculated, followed by classification consistency studies. RESULTS: Storing samples at 4 °C for 8-9 days was associated with a decrease in Aß fractions but not when stored for 1-2 days. Using the ratio partially attenuated the pre-analytical effects. For p-Tau181, samples stored at 4 °C presented lower concentrations, whereas frozen samples presented higher ones. Concerning classification consistency in comparisons that revealed strong correlations (p-Tau181), the percentage of total agreement was greater than 90 % in a large number of the tested cut-offs values. CONCLUSIONS: Our findings provide relevant information for the standardization of sample collection and storage in the analysis of AD BBM in an automated platform. This knowledge is crucial to ensure their introduction into clinical settings.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico , Proteínas tau , Péptidos beta-Amiloides , Estudios Retrospectivos , Biomarcadores
14.
EBioMedicine ; 90: 104547, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37002988

RESUMEN

BACKGROUND: The diagnosis of symptomatic Alzheimer's disease is a clinical challenge in adults with Down syndrome. Blood biomarkers would be of particular clinical importance in this population. The astrocytic Glial Fibrillary Acidic Protein (GFAP) is a marker of astrogliosis associated with amyloid pathology, but its longitudinal changes, association with other biomarkers and cognitive performance have not been studied in individuals with Down syndrome. METHODS: We performed a three-centre study of adults with Down syndrome, autosomal dominant Alzheimer's disease and euploid individuals enrolled in Hospital Sant Pau, Barcelona (Spain), Hospital Clinic, Barcelona (Spain) and Ludwig-Maximilians-Universität, Munich (Germany). Cerebrospinal fluid (CSF) and plasma GFAP concentrations were quantified using Simoa. A subset of participants had PET 18F-fluorodeoxyglucose, amyloid tracers and MRI measurements. FINDINGS: This study included 997 individuals, 585 participants with Down syndrome, 61 Familial Alzheimer's disease mutation carriers and 351 euploid individuals along the Alzheimer's disease continuum, recruited between November 2008 and May 2022. Participants with Down syndrome were clinically classified at baseline as asymptomatic, prodromal Alzheimer's disease and Alzheimer's disease dementia. Plasma GFAP levels were significantly increased in prodromal and Alzheimer's disease dementia compared to asymptomatic individuals and increased in parallel to CSF Aß changes, ten years prior to amyloid PET positivity. Plasma GFAP presented the highest diagnostic performance to discriminate symptomatic from asymptomatic groups (AUC = 0.93, 95% CI 0.9-0.95) and its concentrations were significantly higher in progressors vs non-progressors (p < 0.001), showing an increase of 19.8% (11.8-33.0) per year in participants with dementia. Finally, plasma GFAP levels were highly correlated with cortical thinning and brain amyloid pathology. INTERPRETATION: Our findings support the utility of plasma GFAP as a biomarker of Alzheimer's disease in adults with Down syndrome, with possible applications in clinical practice and clinical trials. FUNDING: AC Immune, La Caixa Foundation, Instituto de Salud Carlos III, National Institute on Aging, Wellcome Trust, Jérôme Lejeune Foundation, Medical Research Council, Alzheimer's Association, National Institute for Health Research, EU Joint Programme-Neurodegenerative Disease Research, Alzheimer's Society, Deutsche Forschungsgemeinschaft, Stiftung für die Erforschung von Verhaltens, Fundación Tatiana Pérez de Guzmán el Bueno & European Union's Horizon 2020 und Umwelteinflüssen auf die menschliche Gesundheit.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Enfermedades Neurodegenerativas , Adulto , Humanos , Enfermedad de Alzheimer/metabolismo , Síndrome de Down/epidemiología , Estudios Longitudinales , Péptidos beta-Amiloides/metabolismo , Proteína Ácida Fibrilar de la Glía , Estudios de Cohortes , Biomarcadores , Proteínas tau/metabolismo
15.
Brain Commun ; 5(2): fcad074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056479

RESUMEN

The study of sex differences in Alzheimer's disease is increasingly recognized as a key priority in research and clinical development. People with Down syndrome represent the largest population with a genetic link to Alzheimer's disease (>90% in the 7th decade). Yet, sex differences in Alzheimer's disease manifestations have not been fully investigated in these individuals, who are key candidates for preventive clinical trials. In this double-centre, cross-sectional study of 628 adults with Down syndrome [46% female, 44.4 (34.6; 50.7) years], we compared Alzheimer's disease prevalence, as well as cognitive outcomes and AT(N) biomarkers across age and sex. Participants were recruited from a population-based health plan in Barcelona, Spain, and from a convenience sample recruited via services for people with intellectual disabilities in England and Scotland. They underwent assessment with the Cambridge Cognitive Examination for Older Adults with Down Syndrome, modified cued recall test and determinations of brain amyloidosis (CSF amyloid-ß 42 / 40 and amyloid-PET), tau pathology (CSF and plasma phosphorylated-tau181) and neurodegeneration biomarkers (CSF and plasma neurofilament light, total-tau, fluorodeoxyglucose-PET and MRI). We used within-group locally estimated scatterplot smoothing models to compare the trajectory of biomarker changes with age in females versus males, as well as by apolipoprotein ɛ4 carriership. Our work revealed similar prevalence, age at diagnosis and Cambridge Cognitive Examination for Older Adults with Down Syndrome scores by sex, but males showed lower modified cued recall test scores from age 45 compared with females. AT(N) biomarkers were comparable in males and females. When considering apolipoprotein ɛ4, female ɛ4 carriers showed a 3-year earlier age at diagnosis compared with female non-carriers (50.5 versus 53.2 years, P = 0.01). This difference was not seen in males (52.2 versus 52.5 years, P = 0.76). Our exploratory analyses considering sex, apolipoprotein ɛ4 and biomarkers showed that female ɛ4 carriers tended to exhibit lower CSF amyloid-ß 42/amyloid-ß 40 ratios and lower hippocampal volume compared with females without this allele, in line with the clinical difference. This work showed that biological sex did not influence clinical and biomarker profiles of Alzheimer's disease in adults with Down syndrome. Consideration of apolipoprotein ɛ4 haplotype, particularly in females, may be important for clinical research and clinical trials that consider this population. Accounting for, reporting and publishing sex-stratified data, even when no sex differences are found, is central to helping advance precision medicine.

16.
Alzheimers Dement ; 19(9): 3916-3925, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37038748

RESUMEN

BACKGROUND: Down syndrome (DS) is a genetic form of Alzheimer's disease (AD). However, clinical diagnosis is difficult, and experts emphasize the need for detecting intra-individual cognitive decline. OBJECTIVE: To compare the performance of baseline and longitudinal neuropsychological assessments for the diagnosis of symptomatic AD in DS. METHODS: Longitudinal cohort study of adults with DS. Individuals were classified as asymptomatic, prodromal AD, or AD dementia. We performed receiver operating characteristic curve analyses to compare baseline and longitudinal changes of CAMCOG-DS and mCRT. RESULTS: We included 562 adults with DS. Baseline assessments showed good to excellent diagnostic performance for AD dementia (AUCs between 0.82 and 0.99) and prodromal AD, higher than the 1-year intra-individual cognitive decline (area under the ROC curve between 0.59 and 0.79 for AD dementia, lower for prodromal AD). Longer follow-ups increased the diagnostic performance of the intra-individual cognitive decline. DISCUSSION: Baseline cognitive assessment outperforms the 1-year intra-individual cognitive decline in adults with DS.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Síndrome de Down , Adulto , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/psicología , Síndrome de Down/complicaciones , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Estudios Longitudinales , Estudios Transversales , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Pruebas Neuropsicológicas , Cognición
17.
J Neuromuscul Dis ; 10(4): 653-665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038823

RESUMEN

BACKGROUND: Three therapeutic strategies have radically changed the therapeutic scenario for spinal muscular atrophy (SMA). However, therapeutic response differs between individuals. There is a need to identify biomarkers to further assess therapeutic response and to better understand which variables determine the extent of response. METHODS: We conducted a study using an optimized digital droplet PCR-based method for the ultra-sensitive detection of SMN transcript in serum EVs from SMA 2 individuals treated with nusinersen over 14 months. In parallel, we investigated levels of serum and CSF neurofilament heavy chain (pNF-H) in the same cohort. RESULTS: Expression of flSMN transcript in EVs of SMA 2 individuals prior to nusinersen was lower than in controls (0.40 vs 2.79 copies/ul; p < 0.05) and increased after 14 months of nusinersen (0.40 vs 1.11 copies/ul; p < 0.05). The increase in flSMN with nusinersen was significantly higher in younger individuals (p < 0.05). Serum pNF-h was higher in non-treated individuals with SMA 2 than in controls (230.72 vs 22.88 pg/ml; p < 0.05) and decreased with nusinersen (45.72 pg/ml at 6 months, 39.02 pg/ml at 14 months). CSF pNF-h in SMA 2 individuals also decreased with nusinersen (248.04 pg/ml prior to treatment, 197.10 pg/dl at 2 months, 104.43 pg/dl at 6 months, 131.03 pg/dl at 14 months). CONCLUSIONS: We identified an increase of flSMN transcript in serum EVs of SMA 2 individuals treated with nusinersen that was more pronounced in the younger individuals. Our results indicate that flSMN transcript expression in serum EVs is a possible biomarker in SMA to predict or monitor the response to treatment.


Asunto(s)
Vesículas Extracelulares , Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Humanos , Biomarcadores , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico
18.
Alzheimers Dement ; 19(11): 4817-4827, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37021589

RESUMEN

BACKGROUND: Basal forebrain (BF) degeneration occurs in Down syndrome (DS)-associated Alzheimer's disease (AD). However, the dynamics of BF atrophy with age and disease progression, its impact on cognition, and its relationship with AD biomarkers have not been studied in DS. METHODS: We included 234 adults with DS (150 asymptomatic, 38 prodromal AD, and 46 AD dementia) and 147 euploid controls. BF volumes were extracted from T-weighted magnetic resonance images using a stereotactic atlas in SPM12. We assessed BF volume changes with age and along the clinical AD continuum and their relationship to cognitive performance, cerebrospinal fluid (CSF) and plasma amyloid/tau/neurodegeneration biomarkers, and hippocampal volume. RESULTS: In DS, BF volumes decreased with age and along the clinical AD continuum and significantly correlated with amyloid, tau, and neurofilament light chain changes in CSF and plasma, hippocampal volume, and cognitive performance. DISCUSSION: BF atrophy is a potentially valuable neuroimaging biomarker of AD-related cholinergic neurodegeneration in DS.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Humanos , Adulto , Enfermedad de Alzheimer/patología , Síndrome de Down/diagnóstico por imagen , Síndrome de Down/complicaciones , Atrofia/patología , Biomarcadores/líquido cefalorraquídeo
19.
Neurology ; 101(4): 172-180, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36878698

RESUMEN

Blood-based biomarkers offer a major advance in the clinical evaluation of neurodegenerative diseases. Currently, research studies have reported robust assays of blood markers for the detection of amyloid and tau pathologies specific to Alzheimer disease (amyloid-ß peptides, and p-tau) and nonspecific blood markers of neuronal (neurofilament light, ß-synuclein, and ubiquitin-C-terminal-hydrolase-L1) and glial degeneration (glial fibrillary acidic protein) that can measure key pathophysiologic processes in several neurodegenerative diseases. In the near future, these markers may be used for screening, diagnosis, or disease and treatment response monitoring. Blood-based biomarkers for neurodegenerative diseases have been rapidly implemented in research, and they have the potential to enter clinical use soon in different clinical settings. In this review, we will describe the main developments and their potential implications for the general neurologist.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedades Neurodegenerativas/diagnóstico , Neurólogos , Péptidos beta-Amiloides , Biomarcadores/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...