Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(10): 107764, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736038

RESUMEN

Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT50 and PRNT80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation.

2.
J Gen Virol ; 103(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35191823

RESUMEN

Arboviruses are medically important arthropod-borne viruses that cause a range of diseases in humans from febrile illness to arthritis, encephalitis and hemorrhagic fever. Given their transmission cycles, these viruses face the challenge of replicating in evolutionarily divergent organisms that can include ticks, flies, mosquitoes, birds, rodents, reptiles and primates. Furthermore, their cell attachment receptor utilization may be affected by the opposing needs for generating high and sustained serum viremia in vertebrates such that virus particles are efficiently collected during a hematophagous arthropod blood meal but they must also bind sufficiently to cellular structures on divergent organisms such that productive infection can be initiated and viremia generated. Sulfated polysaccharides of the glycosaminoglycan (GAG) groups, primarily heparan sulfate (HS), have been identified as cell attachment moieties for many arboviruses. Original identification of GAG binding as a phenotype of arboviruses appeared to involve this attribute arising solely as a consequence of adaptation of virus isolates to growth in cell culture. However, more recently, naturally circulating strains of at least one arbovirus, eastern equine encephalitis, have been shown to bind HS efficiently and the GAG binding phenotype continues to be associated with arbovirus infection in published studies. If GAGs are attachment receptors for many naturally circulating arboviruses, this could lead to development of broad-spectrum antiviral therapies through blocking of the virus-GAG interaction. This review summarizes the available data for GAG/HS binding as a phenotype of naturally circulating arbovirus strains emphasizing the importance of avoiding tissue culture amplification and artifactual phenotypes during their isolation.


Asunto(s)
Infecciones por Arbovirus/virología , Arbovirus/inmunología , Heparitina Sulfato/inmunología , Animales , Humanos
3.
bioRxiv ; 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34341790

RESUMEN

Pandemic SARS CoV-2 has been undergoing rapid evolution during spread throughout the world resulting in the emergence of many Spike protein variants, some of which appear to either evade antibody neutralization, transmit more efficiently, or potentially exhibit increased virulence. This raises significant concerns regarding the long-term efficacy of protection elicited after primary infection and/or from vaccines derived from single virus Spike (S) genotypes, as well as the efficacy of anti-S monoclonal antibody based therapeutics. Here, we used fully human polyclonal human IgG (SAB-185), derived from hyperimmunization of transchromosomic bovines with DNA plasmids encoding the SARS-CoV-2 Wa-1 strain S protein or purified ectodomain of S protein, to examine the neutralizing capacity of SAB-185 in vitro and the protective efficacy of passive SAB-185 antibody (Ab) transfer in vivo . The Ab preparation was tested for neutralization against five variant SARS-CoV-2 strains: Munich (Spike D614G), UK (B.1.1.7), Brazil (P.1) and SA (B.1.3.5) variants, and a variant isolated from a chronically infected immunocompromised patient (Spike Δ144-146). For the in vivo studies, we used a new human ACE2 (hACE2) transgenic Syrian hamster model that exhibits lethality after SARS-Cov-2 challenge and the Munich, UK, SA and Δ144-146 variants. SAB-185 neutralized each of the SARS-CoV-2 strains equivalently on Vero E6 cells, however, a control convalescent human serum sample was less effective at neutralizing the SA variant. In the hamster model, prophylactic SAB-185 treatment protected the hamsters from fatal disease and minimized clinical signs of infection. These results suggest that SAB-185 may be an effective treatment for patients infected with SARS CoV-2 variants.

4.
PLoS Negl Trop Dis ; 9(6): e0003800, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26115459

RESUMEN

Chikungunya virus (CHIKV) is a positive sense, single stranded RNA virus in the genus Alphavirus, and the etiologic agent of epidemics of severe arthralgia in Africa, Asia, Europe and, most recently, the Americas. CHIKV causes chikungunya fever (CHIK), a syndrome characterized by rash, fever, and debilitating, often chronic arthritis. In recent outbreaks, CHIKV has been recognized to manifest more neurologic signs of illness in the elderly and those with co-morbidities. The syndrome caused by CHIKV is often self-limited; however, many patients develop persistent arthralgia that can last for months or years. These characteristics make CHIKV not only important from a human health standpoint, but also from an economic standpoint. Despite its importance as a reemerging disease, there is no licensed vaccine or specific treatment to prevent CHIK. Many studies have begun to elucidate the pathogenesis of CHIKF and the mechanism of persistent arthralgia, including the role of the adaptive immune response, which is still poorly understood. In addition, the lack of an animal model for chronic infection has limited studies of CHIKV pathogenesis as well as the ability to assess the safety of vaccine candidates currently under development. To address this deficiency, we used recombination activating gene 1 (RAG1-/-) knockout mice, which are deficient in both T and B lymphocytes, to develop a chronic CHIKV infection model. Here, we describe this model as well as its use in evaluating the safety of a live-attenuated vaccine candidate.


Asunto(s)
Inmunidad Adaptativa/inmunología , Artralgia/fisiopatología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/fisiopatología , Virus Chikungunya/genética , Modelos Animales de Enfermedad , Vacunas Virales/inmunología , Análisis de Varianza , Animales , Secuencia de Bases , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Análisis de Secuencia de ARN , Carga Viral , Ensayo de Placa Viral
5.
PLoS Negl Trop Dis ; 8(8): e2969, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25101995

RESUMEN

Mayaro virus (MAYV) is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease.


Asunto(s)
Alphavirus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Células Cultivadas , Ratones , América del Sur , Vacunas Atenuadas/inmunología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...