Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heredity (Edinb) ; 130(6): 381-393, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36966202

RESUMEN

In the Anthropocene, many species are rapidly shifting their ranges in response to human-driven habitat modifications. Studying patterns and genetic signatures of range shifts helps to understand how species cope with environmental disturbances and predict future shifts in the face of global environmental change. We investigated the genetic signature of a contemporary wide-range expansion observed in the Iberian common vole Microtus arvalis asturianus shortly after a colonization event. We used mtDNA and microsatellite data to investigate patterns of genetic diversity, structure, demography, and gene flow across 57 localities covering the historical range of the species and the newly colonized area. The results showed a genetic footprint more compatible with a true range expansion (i.e. the colonization of previously unoccupied areas), than with a model of "colonization from within" (i.e. local expansions from small, unnoticed populations). Genetic diversity measures indicated that the source population was likely located at the NE of the historical range, with a declining gradient of genetic diversity towards the more recently invaded areas. At the expansion front, we observed the greatest gene flow and smallest pairwise differences between nearby localities. Both natural landscape features (rivers) and recent anthropogenic barriers (roads, railways) explained a large proportion of genetic variance among populations and had a significant impact on the colonization pathways used by voles.


Asunto(s)
Flujo Génico , Variación Genética , Animales , Humanos , España , Ecosistema , Arvicolinae/genética , Repeticiones de Microsatélite
2.
PLoS One ; 18(1): e0279924, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662755

RESUMEN

Hyphessobrycon is one of the most species rich and widely distributed genera in the family Characidae, with more than 160 species ranging from Veracruz, Mexico to Mar Chiquita Lagoon in Buenos Aires, Argentina. The majority of Hyphessobrycon diversity shows a cis-Andean distribution; only nine species are trans-Andean including H. compressus (Meek 1908). It is well established that Hyphessobrycon is not monophyletic but it has been suggested that natural groups can be identified within the larger Hyphessobrycon species group. In this study, we tested the monophyly of trans-Andean species of Hyphessobrycon and investigated the placement of H. compressus. We inferred the first phylogenomic hypothesis of trans-Andean Hyphessobrycon that includes nearly complete taxonomic sampling (eight of nine valid species) using ultraconserved elements (UCEs). We analyzed 75% (1682 UCEs), 90% (1258 UCEs), and 95% (838 UCEs) complete data matrices, and inferred phylogenomic hypotheses under concatenation and coalescent approaches. In all cases, we recovered the monophyly of trans-Andean Hyphessobrycon inclusive of H. compressus, strong support for three species groups, and evidence of cryptic diversity within the widespread H. compressus and H. condotensis. We used our phylogenomic hypothesis to investigate the biogeographic history of Hyphessobrycon in Middle America. Our ancestral range estimation analysis suggests a single event of cis- to trans-Andean colonization followed by stepwise colonization from the Pacific slope of northwestern South America (Chocó block) to northern Middle America (Maya block). Our work supports the recognition of the trans-Andean species as Hyphessobrycon sensu stricto and provides an evolutionary template to examine morphological characters that will allow us to better understand the diversity of Hyphessobrycon in Middle America.


Asunto(s)
Characidae , Animales , Filogenia , América del Sur , Colombia , América del Norte
4.
Mol Phylogenet Evol ; 171: 107459, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35351632

RESUMEN

The macroevolutionary consequences of evolving in the deep-sea remain poorly understood and are compounded by the fact that convergent adaptations for living in this environment makes elucidating phylogenetic relationships difficult. Lophiiform anglerfishes exhibit extreme habitat and predatory specializations, including the use of a fin-spine system as a luring device and unique reproductive strategies where parasitic males attach and fuse to females. Despite their notoriety for these odd characteristics, evolutionary relationships among these fishes remain unclear. We sought to clarify the evolutionary history of Lophiiformes using data from 1000 ultraconserved elements and phylogenomic inference methods with particular interest paid to the Ceratioidei (deep-sea anglerfishes) and Antennarioidei (frogfishes and handfishes). At the suborder level, we recovered similar topologies in separate phylogenomic analyses: The Lophioidei (monkfishes) are the sister group to the rest of the Lophiiformes, Ogcocephaloidei (batfishes) and Antennarioidei (frogfishes) form a sister group, and Chaunacioidei (coffinfishes) and Ceratioidei (deep-sea anglerfishes) form a clade. The relationships we recover within the ceratioids disagree with most previous phylogenetic investigations, which used legacy phylogenetic markers or morphology. We recovered non-monophyletic relationships in the Antennarioidei and proposed three new families based on molecular and morphological evidence: Histiophrynidae, Rhycheridae, and Tathicarpidae. Antennariidae was re-evaluated to include what was known as Antennariinae, but not Histiophryninae. Non-bifurcating signal in splits network analysis indicated reticulations among and within suborders, supporting the complicated history of the Lophiiformes previously found with morphological data. Although we resolve relationships within Antennarioidei, Ceratioidei relationships remain somewhat unclear without better taxonomic sampling.


Asunto(s)
Evolución Biológica , Peces , Animales , Ecosistema , Femenino , Humanos , Masculino , Filogenia , Conducta Predatoria
5.
Genome Biol Evol ; 13(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34272856

RESUMEN

Choosing among types of genomic markers to be used in a phylogenomic study can have a major influence on the cost, design, and results of a study. Yet few attempts have been made to compare categories of next-generation sequence markers limiting our ability to compare the suitability of these different genomic fragment types. Here, we explore properties of different genomic markers to find if they vary in the accuracy of component phylogenetic trees and to clarify the causes of conflict obtained from different data sets or inference methods. As a test case, we explore the causes of discordance between phylogenetic hypotheses obtained using a novel data set of ultraconserved elements (UCEs) and a recently published exon data set of the cichlid tribe Heroini. Resolving relationships among heroine cichlids has historically been difficult, and the processes of colonization and diversification in Middle America and the Greater Antilles are not yet well understood. Despite differences in informativeness and levels of gene tree discordance between UCEs and exons, the resulting phylogenomic hypotheses generally agree on most relationships. The independent data sets disagreed in areas with low phylogenetic signal that were overwhelmed by incomplete lineage sorting and nonphylogenetic signals. For UCEs, high levels of incomplete lineage sorting were found to be the major cause of gene tree discordance, whereas, for exons, nonphylogenetic signal is most likely caused by a reduced number of highly informative loci. This paucity of informative loci in exons might be due to heterogeneous substitution rates that are problematic to model (i.e., computationally restrictive) resulting in systematic errors that UCEs (being less informative individually but more uniform) are less prone to. These results generally demonstrate the robustness of phylogenomic methods to accommodate genomic markers with different biological and phylogenetic properties. However, we identify common and unique pitfalls of different categories of genomic fragments when inferring enigmatic phylogenetic relationships.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Exones , Genoma , Genómica , Filogenia
6.
PLoS One ; 15(7): e0235288, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32614920

RESUMEN

The American crocodile (Crocodylus acutus) is a widely distributed species across coastal and brackish areas of the Neotropical region of the Americas and the Greater Antilles. Available information on patterns of genetic differentiation in C. acutus shows a complex structuring influenced by interspecific interactions (mainly hybridization) and anthropogenic actions (mostly historical hunting, recent poaching, habitat loss and fragmentation, and unintentional translocation of individuals). In this study, we used data on mitochondrial DNA control region and 11 nuclear polymorphic microsatellite loci to assess the degree of population structure of C. acutus in South America, North America, Central America and the Greater Antilles. We used traditional genetic differentiation indices, Bayesian clustering and multivariate methods to create a more comprehensive picture of the genetic relationships within the species across its range. Analyses of mtDNA and microsatellite loci show evidence of a strong population genetic structure in the American crocodile, with unique populations in each sampling locality. Our results support previous findings showing large degrees of genetic differentiation between the continental and the Greater Antillean C. acutus. We report three new haplotypes unique to Venezuela, which are considerably less distant from the Central and North American haplotypes than to the Greater Antillean ones. Our findings reveal genetic population differentiation between Cuban and Jamaican C. acutus and offer the first evidence of strong genetic differentiation among the populations of Greater Antillean C. acutus.


Asunto(s)
Caimanes y Cocodrilos/genética , Animales , Región del Caribe , América Central , ADN Mitocondrial/genética , Variación Genética , Genética de Población , Haplotipos , Repeticiones de Microsatélite , Mitocondrias/genética , América del Norte , América del Sur
7.
Syst Biol ; 68(4): 573-593, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30521024

RESUMEN

Resolving patterns of ancient and rapid diversifications is one of the most challenging tasks in evolutionary biology. These difficulties arise from confusing phylogenetic signals that are associated with the interplay of incomplete lineage sorting (ILS) and homoplasy. Phylogenomic analyses of hundreds, or even thousands, of loci offer the potential to resolve such contentious relationships. Yet, how much useful phylogenetic information these large data sets contain remains uncertain and often goes untested. Here, we assess the utility of different data filtering approaches to maximize phylogenetic information and minimize noise when reconstructing an ancient radiation of Neotropical electric knifefishes (Order Gymnotiformes) using ultraconserved elements. We found two contrasting hypotheses of gymnotiform evolutionary relationships depending on whether phylogenetic inferences were based on concatenation or coalescent methods. In the first case, all analyses inferred a previously-and commonly-proposed hypothesis, where the family Apteronotidae was found as the sister group to all other gymnotiform families. In contrast, coalescent-based analyses suggested a novel hypothesis where families producing pulse-type (viz., Gymnotidae, Hypopomidae, and Rhamphichthyidae) and wave-type electric signals (viz., Apteronotidae, Sternopygidae) were reciprocally monophyletic. Nodal support for this second hypothesis increased when analyzing loci with the highest phylogenetic information content and further increased when data were pruned using targeted filtering methods that maximized phylogenetic informativeness at the deepest nodes of the Gymnotiformes. Bayesian concordance analyses and topology tests of individual gene genealogies demonstrated that the difficulty of resolving this radiation was likely due to high gene-tree incongruences that resulted from ILS. We show that data filtering reduces gene-tree heterogeneity and increases nodal support and consistency of species trees using coalescent methods; however, we failed to observe the same effect when using concatenation methods. Furthermore, the targeted filtering strategies applied here support the use of "gene data interrogation" rather than "gene genealogy interrogation" approaches in phylogenomic analyses, to extract phylogenetic signal from intractable portions of the Tree of Life.


Asunto(s)
Clasificación/métodos , Gymnotiformes/clasificación , Filogenia , Animales , Secuencia Conservada/genética , Gymnotiformes/genética
8.
J Fish Biol ; 93(5): 778-791, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30101564

RESUMEN

The extent and nature of genetic differentiation in Semotilus atromaculatus, one of the most abundant and widespread leuciscids in North America, were evaluated based on mitochondrial (mt) and nuclear DNA sequence variation. Phylogenetic relationships were first inferred based on a fragment of the cytochrome b (cytb) region and the nuclear intron s7 gene for S. atromaculatus and all other congeners as well as representative species from all other genera in the creek chub-plagopterin clade. The phylogeography of major haplogroups of S. atromaculatus was also assessed according to variation in a fragment of the mitochondrial cytb region from 567 individuals across its range. All analyses identified S. thoreauianus, S. lumbee and S. corporalis as reciprocally monophyletic groups. Analyses of nuclear sequence variation resolved S. atromaculatus as a single clade, where S. thoreauianus and S. lumbee were recovered as the sister group to S. atromaculatus, and S. corporalis was resolved as sister to all other species in the genus. Analyses of mtDNA sequence variation recovered S. atromaculatus as three well supported and differentiated monophyletic groups, with a widespread genetically homogeneous lineage extending across most of the current range of the species; a more geographically restricted and geographically structured lineage in the southern Appalachians, sister group to S. lumbee; and a geographically restricted lineage was identified from two Gulf Slope basins. Evidence of complex mito-nuclear discordance and phylogeographic differentiation within S. atromaculatus illustrates that further analysis of widespread species is warranted to understand North American freshwater fish diversity and distributions.


Asunto(s)
Cyprinidae/clasificación , Cyprinidae/genética , Variación Genética , Filogenia , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Proteínas de Peces/genética , Agua Dulce , Intrones/genética , América del Norte , Filogeografía , Análisis de Secuencia de ADN , Especificidad de la Especie
9.
Ecohealth ; 14(4): 771-782, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29164472

RESUMEN

It is becoming increasingly likely that rodents will drive future disease epidemics with the continued expansion of cities worldwide. Though transmission risk is a growing concern, relatively little is known about pathogens carried by urban rats. Here, we assess whether the diversity and prevalence of Bartonella bacteria differ according to the (co)occurrence of rat hosts across New Orleans, LA (NO), where both Norway (Rattus norvegicus) and roof rats (Rattus rattus) are found, relative to New York City (NYC) which only harbors Norway rats. We detected human pathogenic Bartonella species in both NYC and New Orleans rodents. We found that Norway rats in New Orleans harbored a more diverse assemblage of Bartonella than Norway rats in NYC and that Norway rats harbored a more diverse and distinct assemblage of Bartonella compared to roof rats in New Orleans. Additionally, Norway rats were more likely to be infected with Bartonella than roof rats in New Orleans. Flea infestation appears to be an important predictor of Bartonella infection in Norway rats across both cities. These findings illustrate that pathogen infections can be heterogeneous in urban rodents and indicate that further study of host species interactions could clarify variation in spillover risk across cities.


Asunto(s)
Bartonella/aislamiento & purificación , Reservorios de Enfermedades/microbiología , Enfermedades de los Roedores/epidemiología , Animales , Femenino , Masculino , Nueva Orleans/epidemiología , Ciudad de Nueva York/epidemiología , Ratas , Zoonosis
10.
J Gen Virol ; 98(7): 1658-1666, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28714849

RESUMEN

Lagoviruses belong to the Caliciviridae family. They were first recognized as highly pathogenic viruses of the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus) that emerged in the 1970-1980s, namely, rabbit haemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV), according to the host species from which they had been first detected. However, the diversity of lagoviruses has recently expanded to include new related viruses with varying pathogenicity, geographic distribution and host ranges. Together with the frequent recombination observed amongst circulating viruses, there is a clear need to establish precise guidelines for classifying and naming lagovirus strains. Therefore, here we propose a new nomenclature based on phylogenetic relationships. In this new nomenclature, a single species of lagovirus would be recognized and called Lagovirus europaeus. The species would be divided into two genogroups that correspond to RHDV- and EBHSV-related viruses, respectively. Genogroups could be subdivided into genotypes, which could themselves be subdivided into phylogenetically well-supported variants. Based on available sequences, pairwise distance cutoffs have been defined, but with the accumulation of new sequences these cutoffs may need to be revised. We propose that an international working group could coordinate the nomenclature of lagoviruses and any proposals for revision.


Asunto(s)
Lagovirus/clasificación , ARN Viral/genética , Terminología como Asunto , Animales , Infecciones por Caliciviridae/virología , Genotipo , Liebres , Lagovirus/genética , Lagovirus/patogenicidad , Filogenia , Conejos
11.
Syst Biol ; 66(6): 881-895, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334176

RESUMEN

Ostariophysi is a superorder of bony fishes including more than 10,300 species in 1100 genera and 70 families. This superorder is traditionally divided into five major groups (orders): Gonorynchiformes (milkfishes and sandfishes), Cypriniformes (carps and minnows), Characiformes (tetras and their allies), Siluriformes (catfishes), and Gymnotiformes (electric knifefishes). Unambiguous resolution of the relationships among these lineages remains elusive, with previous molecular and morphological analyses failing to produce a consensus phylogeny. In this study, we use over 350 ultraconserved element (UCEs) loci comprising 5 million base pairs collected across 35 representative ostariophysan species to compile one of the most data-rich phylogenies of fishes to date. We use these data to infer higher level (interordinal) relationships among ostariophysan fishes, focusing on the monophyly of the Characiformes-one of the most contentiously debated groups in fish systematics. As with most previous molecular studies, we recover a non-monophyletic Characiformes with the two monophyletic suborders, Citharinoidei and Characoidei, more closely related to other ostariophysan clades than to each other. We also explore incongruence between results from different UCE data sets, issues of orthology, and the use of morphological characters in combination with our molecular data. [Conserved sequence; ichthyology; massively parallel sequencing; morphology; next-generation sequencing; UCEs.].


Asunto(s)
Characiformes/clasificación , Characiformes/genética , Secuencia Conservada/genética , Filogenia , Animales
12.
Mitochondrial DNA B Resour ; 3(1): 1-5, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33474047

RESUMEN

We sequenced the complete mitochondrial genomes of three pairs of congeneric peripheral fishes distributed on either side of the Isthmus of Panama in order to test their status as geminate species pairs. Our phylogenetic analysis did not support a sister relationship between Gobiomorus dormitor and G. maculatus and therefore they cannot be considered geminates. The average genetic distance of protein-coding genes between Sicydium altum and S. salvini was more than two times larger than between Atlantic and Pacific Awaous banana, suggesting different timings for their divergence across the Isthmus of Panama.

13.
Mitochondrial DNA B Resour ; 2(2): 747-750, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-33490475

RESUMEN

We report the first complete mitochondrial genomes of three species of eleotrid fishes from the Pacific and Atlantic watersheds of Panama: Eleotris amblyopsis, E. picta, and Hemieleotris latifasciata. The three species have similar mitochondrial genomes with identical gene order; however, there are differences in the length of control region, 16S rRNA, and in seven of the tRNAs. In addition, ATP8 is one codon shorter in E. picta than in E. amblyopsis or H. latifasciata. We infer a phylogeny for Gobiiformes based on all mitochondrial protein-coding genes, which supports the monophyly of Eleotridae but does not recover Neotropical members of Eleotris as a distinct clade.

14.
Infect Genet Evol ; 47: 94-98, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27871816

RESUMEN

Rabbit haemorrhagic disease (RHD) is a highly lethal and contagious viral disease that produces haemorrhagic lesions in liver and lungs of domestic and wild rabbits (Oryctolagus cuniculus). This study investigates the transmission of RHDV from infected rabbits to mice, based on the detection of viral RNA. Sixteen wild mice (Mus spretus, n=12 and Apodemus sylvaticus, n=4) were put in contact with nine rabbits inoculated with RHDV. No mice died following exposure to RHDV-infected rabbits or developed macroscopic haemorrhagic lesions. On the fourth day of contact, RHDV was detected by RT-PCR in the faeces of three of the four mice killed and in the livers of two of them. Three days after contact period with the inoculated rabbits (7th day of the experiment), RHDV was detected by RT-PCR in 100% (n=4) of the faeces and 50% (n=2) of the livers of euthanized animals. Ten days after contact period (14th day of the experiment), RHDV was not detected in the faeces or liver from any of the mice euthanized. However, 64days after contact period, RHDV was detected in the faeces of one mouse (1 of 4). We demonstrate cross-species transmission of RHDV-RNA from rabbit to rodent and the capability of RHDV-RNA to persist in mice for at least 10days after contact, and potentially up to two months, although viral replication within the rodent and/or infectivity was not evaluated in the present study.


Asunto(s)
Infecciones por Caliciviridae/transmisión , Virus de la Enfermedad Hemorrágica del Conejo/genética , Virus de la Enfermedad Hemorrágica del Conejo/patogenicidad , Animales , Infecciones por Caliciviridae/veterinaria , Heces/virología , Hígado/virología , Ratones , Reacción en Cadena de la Polimerasa , ARN Viral/análisis , ARN Viral/genética , Conejos , Especificidad de la Especie
15.
Evolution ; 70(9): 2134-44, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27436179

RESUMEN

Communication signals are highly diverse traits. This diversity is usually assumed to be shaped by selective forces, whereas the null hypothesis of divergence through drift is often not considered. In Panama, the weakly electric fish Brachyhypopomus occidentalis is widely distributed in multiple independent drainage systems, which provide a natural evolutionary laboratory for the study of genetic and signal divergence in separate populations. We quantified geographic variation in the electric signals of 109 fish from five populations, and compared it to the neutral genetic variation estimated from cytochrome oxidase I (COI) sequences of the same individuals, to test whether drift may be driving divergence of their signals. Signal distances were highly correlated with genetic distances, even after controlling for geographic distances, suggesting that drift alone is sufficient to explain geographic variation in electric signals. Significant differences at smaller geographic scales (within drainages) showed, however, that electric signals may evolve at a faster rate than expected under drift, raising the possibility that additional adaptive forces may be contributing to their evolution. Overall, our data point to stochastic forces as main drivers of signal evolution in this species and extend the role of drift in the evolution of communication systems to fish and electrocommunication.


Asunto(s)
Comunicación Animal , Evolución Biológica , Flujo Genético , Gymnotiformes/fisiología , Animales , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Proteínas de Peces/genética , Gymnotiformes/genética , Masculino , Panamá , Análisis de Secuencia de ADN
16.
PLoS One ; 11(4): e0153538, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27074006

RESUMEN

Species of the genus Dormitator, also known as sleepers, are representatives of the amphidromous freshwater fish fauna that inhabit the tropical and subtropical coastal environments of the Americas and Western Africa. Because of the distribution of this genus, it could be hypothesized that the evolutionary patterns in this genus, including a pair of geminate species across the Central American Isthmus, could be explained by vicariance following the break-up of Gondwana. However, the evolutionary history of this group has not been evaluated. We constructed a time-scaled molecular phylogeny of Dormitator using mitochondrial (Cytochrome b) and nuclear (Rhodopsin and ß-actin) DNA sequence data to infer and date the cladogenetic events that drove the diversification of the genus and to relate them to the biogeographical history of Central America. Two divergent lineages of Dormitator were recovered: one that included all of the Pacific samples and another that included all of the eastern and western Atlantic samples. In contrast to the Pacific lineage, which showed no phylogeographic structure, the Atlantic lineage was geographically structured into four clades: Cameroon, Gulf of Mexico, West Cuba and Caribbean, showing evidence of potential cryptic species. The separation of the Pacific and Atlantic lineages was estimated to have occurred ~1 million years ago (Mya), whereas the four Atlantic clades showed mean times of divergence between 0.2 and 0.4 Mya. The splitting times of Dormitator between ocean basins are similar to those estimated for other geminate species pairs with shoreline estuarine preferences, which may indicate that the common evolutionary histories of the different clades are the result of isolation events associated with the closure of the Central American Isthmus and the subsequent climatic and oceanographic changes.


Asunto(s)
Evolución Molecular , Peces/genética , Filogenia , Animales , Evolución Biológica , Citocromos b/genética , ADN Mitocondrial/genética , Especiación Genética
17.
PLoS One ; 11(3): e0150245, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26982578

RESUMEN

The success of a reintroduction program is determined by the ability of individuals to reproduce and thrive. Hence, an understanding of the mating system and breeding strategies of reintroduced species can be critical to the success, evaluation and effective management of reintroduction programs. As one of the most threatened crocodile species in the world, the Orinoco crocodile (Crocodylus intermedius) has been reduced to only a few wild populations in the Llanos of Venezuela and Colombia. One of these populations was founded by reintroduction at Caño Macanillal and La Ramera lagoon within the El Frío Biological Station, Venezuela. Twenty egg clutches of C. intermedius were collected at the El Frío Biological Station for incubation in the lab and release of juveniles after one year. Analyzing 17 polymorphic microsatellite loci from 335 hatchlings we found multiple paternity in C. intermedius, with half of the 20 clutches fathered by two or three males. Sixteen mothers and 14 fathers were inferred by reconstruction of multilocus parental genotypes. Our findings showed skewed paternal contributions to multiple-sired clutches in four of the clutches (40%), leading to an overall unequal contribution of offspring among fathers with six of the 14 inferred males fathering 90% of the total offspring, and three of those six males fathering more than 70% of the total offspring. Our results provide the first evidence of multiple paternity occurring in the Orinoco crocodile and confirm the success of reintroduction efforts of this critically endangered species in the El Frío Biological Station, Venezuela.


Asunto(s)
Caimanes y Cocodrilos/fisiología , Paternidad , Animales , Marcadores Genéticos , Masculino , Repeticiones de Microsatélite/genética , Venezuela
18.
Mol Phylogenet Evol ; 91: 17-26, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26002830

RESUMEN

Four genetically distinct clades were recently described under the name Dendropoma petraeum, a Mediterranean endemic vermetid gastropod. The aim of this work is to date the processes that drove to the diversification within this taxon and to relate them to the corresponding historical events occurred in the Mediterranean Sea. Sequences from mitochondrial and nuclear markers were obtained from specimens collected in 29 localities spanning over 4000km across the entire distribution range of D. petraeum species complex. The phylogenetic and coalescent-based analyses confirmed the four well-supported and largely differentiated lineages of D. petraeum, clearly delimited geographically along a west-east axis within the Mediterranean Sea: Western, Tyrrhenian-Sicilian, Ionian-Aegean and Levantine lineages. Divergence time estimates, obtained using a range of known substitution rates for other marine gastropods, indicated two main stages of diversification. In the first period (between 9.5 and 4.5mya), the ancestral D. petraeum diverged into the current four lineages. The most recent period occurred between 3.72 and 0.66mya in the late Pliocene-early Pleistocene, and included the main within-lineage diversification events. Therefore, if the divergence time between the major lineages of Dendropoma in the Mediterranean actually predated or coincided with the Messinian Salinity Crisis, then they should have survived to this dramatic period within the Mediterranean, as supported by Bayes Factors model comparison. Conversely, if the divergence started after the crisis, congruent with the idea that no true marine organism survived the Messinian Salinity Crisis, then our results indicate substitution rates of Dendropoma much higher than usual (5.16% per million years for COI, 3.04% for 16S). More recent climate changes seem to have conditioned the demographic history of each lineage differently. While Western and Tyrrhenian-Sicilian lineages both underwent an increase in their effective population sizes from 1.5 to 0.6mya coinciding with a long interglacial period, the Ionian-Aegean and Levantine lineages showed constant effective population sizes since 2-2.5mya, suggesting that these eastern lineages might represent small and relict populations surviving the subsequent Quaternary glaciations in isolated refugia.


Asunto(s)
Gastrópodos/clasificación , Animales , Teorema de Bayes , Gastrópodos/genética , Mar Mediterráneo , Filogenia , Filogeografía , Salinidad
19.
PLoS One ; 10(4): e0121139, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25849959

RESUMEN

Accurately delimiting species is fundamentally important for understanding species diversity and distributions and devising effective strategies to conserve biodiversity. However, species delimitation is problematic in many taxa, including 'non-adaptive radiations' containing morphologically cryptic lineages. Fortunately, coalescent-based species delimitation methods hold promise for objectively estimating species limits in such radiations, using multilocus genetic data. Using coalescent-based approaches, we delimit species and infer evolutionary relationships in a morphologically conserved group of Central American freshwater fishes, the Poecilia sphenops species complex. Phylogenetic analyses of multiple genetic markers (sequences of two mitochondrial DNA genes and five nuclear loci) from 10/15 species and genetic lineages recognized in the group support the P. sphenops species complex as monophyletic with respect to outgroups, with eight mitochondrial 'major-lineages' diverged by ≥2% pairwise genetic distances. From general mixed Yule-coalescent models, we discovered (conservatively) 10 species within our concatenated mitochondrial DNA dataset, 9 of which were strongly supported by subsequent multilocus Bayesian species delimitation and species tree analyses. Results suggested species-level diversity is underestimated or overestimated by at least ~15% in different lineages in the complex. Nonparametric statistics and coalescent simulations indicate genealogical discordance among our gene tree results has mainly derived from interspecific hybridization in the nuclear genome. However, mitochondrial DNA show little evidence for introgression, and our species delimitation results appear robust to effects of this process. Overall, our findings support the utility of combining multiple lines of genetic evidence and broad phylogeographical sampling to discover and validate species using coalescent-based methods. Our study also highlights the importance of testing for hybridization versus incomplete lineage sorting, which aids inference of not only species limits but also evolutionary processes influencing genetic diversity.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Poecilia/clasificación , Poecilia/genética , Animales , Teorema de Bayes , Biodiversidad , Evolución Molecular , Agua Dulce , Filogeografía
20.
PeerJ ; 2: e582, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25289181

RESUMEN

The Iberian Peninsula is the only region in the world where the two existing subspecies of the European rabbit (Oryctolagus cuniculus) naturally occur and hybridize. In this study we explore the relative roles of historical and contemporary processes in shaping the spatial genetic structure of the rabbit across its native distribution range, and how they differently affect each subspecies and the hybrid zone. For that purpose we obtained multilocus genotypes and mitochondrial DNA data from 771 rabbits across most of the distribution range of the European rabbit in Spain. Based on the nuclear markers we observed a hierarchical genetic structure firstly comprised by two genetic groups, largely congruent with the mitochondrial lineages and subspecies distributions (O. c. algirus and O. c. cuniculus), which were subsequently subdivided into seven genetic groups. Geographic distance alone emerged as an important factor explaining genetic differentiation across the whole range, without the need to invoke for the effect for geographical barriers. Additionally, the significantly positive spatial correlation up to a distance of only 100 km supported the idea that differentiation at a local level is of greater importance when considering the species overall genetic structure. When looking at the subspecies, northern populations of O. c. cuniculus showed more spatial genetic structure and differentiation than O. c. algirus. This could be due to local geographic barriers, limited resources, soil type and/or social behavior limiting dispersal. The hybrid zone showed similar genetic structure to the southern populations but a larger introgression from the northern lineage genome. These differences have been attributed to selection against the hybrids rather than to behavioral differences between subspecies. Ultimately, the genetic structure of the rabbit in its native distribution range is the result of an ensemble of factors, from geographical and ecological, to behavioral and molecular, that hierarchically interact through time and space.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...