Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 378(1): 210-21, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22551478

RESUMEN

Latex films with controlled dual-level nanorough surfaces were obtained by casting from binary blends of fluorinated copolymer particles with a nanostructured core-shell morphology, narrow size dispersity and large size ratios. For this purpose, particles with different size, a common unfluorinated acrylic core copolymer of the self-crosslinking trimethoxysilylpropyl methacrylate (TSPMA) and a hard shell copolymer of either 2,2,2-trifluoroethyl methacrylate (TFEMA) or 1H,1H,2H,2H-heptadecafluorodecyl methacrylate (FMA) were synthesized by multistage emulsion polymerization. The FMA-based particles showed patchy morphologies dictated by the type of ß-cyclodextrin used as FMA phase carrier in their synthesis. Four series of binary blends of either TFEMA or FMA copolymer particles with large (3-4 diameters) size ratios were cast into latex films with controlled hydrophobicity and lipophobicity. AFM and electron microscopy results indicate that addition of the small particles disrupts the hexagonal compact packed 3D organization of the large particles, resulting in dual-level nanorough surfaces and high water contact angles (up to θ(w)=127° in the as cast films, and θ(w)=135° upon aging or thermal annealing causing surface restructuring and TSPMA sol-gel condensation) with respect to the parent single component films. The proposed approach provides a straightforward route for the fabrication of robust coatings and films with tunable lipophobic and highly hydrophobic surfaces.

2.
Carbohydr Polym ; 87(1): 353-360, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34662974

RESUMEN

An antibacterial dimethylamino-chalcone embedded multiblock copolymer (PCL-PEG) was synthesized and characterized using FT-IR, 1H NMR, SEM and SEC and the compound was characterized using FT-IR, 1H NMR, and 13C NMR. A 10% copolymer composite was prepared and casted as film to be used as a biomaterial and the copolymer films without the compound acted as control. TGA, DSC, AFM, SEM and EDAX analysis were performed for the above samples. Surface roughness (Ra) of the copolymer composite film was less when compared to the copolymer film which indicated the proper distribution of chalcone in the composite film. copolymer composite film was hydrophilic compared to copolymer film. Antibacterial adhesion studies were performed for copolymer composite polymer film and evaluated using CFU measurement and SEM analysis. Copolymer composite film shows promising antibacterial adhesion compared to the copolymer film. Hence the copolymer composite film can be used as a new biomaterial endowed with antibacterial properties.

3.
Colloids Surf B Biointerfaces ; 87(2): 236-42, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21676600

RESUMEN

Therapeutic properties of Dead Sea Water (DSW) in the treatment of skin diseases such as atopic dermatitis, psoriasis and photo aging UV damaged skin have been well established. DSW is in fact rich in minerals such as calcium, magnesium, sodium, potassium, zinc and strontium which are known to exploit anti-inflammatory effects and to promote skin barrier recovery. In order to develop a Dead Sea Minerals (DSM) based drug delivery system for topical therapy of skin diseases, polymeric nanoparticles based on Poly (maleic anhydride-alt-butyl vinyl ether) 5% grafted with monomethoxy poly(ethyleneglycol) 2000 MW (PEG) and 95% grafted with 2-methoxyethanol (VAM41-PEG) loaded with DSM were prepared by means of a combined miniemulsion/solvent evaporation process. The resulting nanoparticles were characterized in terms of dimension, morphology, biocompatibility, salt content and release. Cytocompatible spherical nanoparticles possessing an average diameter of about 300 nm, a time controlled drug release profile and a high formulation yield were obtained.


Asunto(s)
Materiales Biocompatibles/síntesis química , Preparaciones de Acción Retardada/síntesis química , Minerales/farmacología , Polímeros/síntesis química , Células 3T3 , Animales , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/uso terapéutico , Emulsiones/química , Éteres/química , Glicoles de Etileno/química , Humanos , Espectroscopía de Resonancia Magnética , Anhídridos Maleicos/química , Ratones , Nanopartículas/química , Nanopartículas/ultraestructura , Océanos y Mares , Tamaño de la Partícula , Polietilenglicoles/química , Polímeros/química , Polímeros/farmacología , Polímeros/uso terapéutico , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/patología , Espectroscopía Infrarroja por Transformada de Fourier , Análisis Espectral
4.
Nanotechnology ; 20(23): 235703, 2009 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-19451684

RESUMEN

Nanoindentation experiments carried out with atomic force microscopes (AFMs) open the way to understand size-related mechanical effects that are not present at the macro- or micro-scale. Several issues, currently the subject of a wide and open debate, must be carefully considered in order to measure quantities and retrieve trends genuinely associated with the material behaviour. The shape of the nanoindenter (the AFM tip) is crucial for a correct data analysis; we have recently developed a simple geometrical model to properly describe the tip effect in the nanoindentation process. Here, we demonstrate that this model is valid in indentation of both soft and hard, or relatively hard, materials carried out by two distinct, commercially available, AFM probes. Moreover, we implement the model with a data interpretation approach aimed at preventing underestimation of the tip penetration into the material. Experiments on soft polymeric materials (poly(methyl methacrylate) and polystyrene) and hard or relatively hard (Si, Au, Al) materials are reported. The results demonstrate that true hardness data can be attained also in shallow indentations and that the appearance of size effects strongly depends on data interpretation issues. In addition, we report on stiffness data measured on the considered materials during their nanoindentation.

5.
Int J Biomater ; 2009: 239643, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20126577

RESUMEN

The most promising approach in Tissue Engineering involves the seeding of porous, biocompatible/biodegradable scaffolds, with donor cells to promote tissue regeneration. Additive biomanufacturing processes are increasingly recognized as ideal techniques to produce 3D structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. This paper presents a novel extrusion-based system to produce 3D scaffolds with controlled internal/external geometry for TE applications.The BioExtruder is a low-cost system that uses a proper fabrication code based on the ISO programming language enabling the fabrication of multimaterial scaffolds. Poly(epsilon-caprolactone) was the material chosen to produce porous scaffolds, made by layers of directionally aligned microfilaments. Chemical, morphological, and in vitro biological evaluation performed on the polymeric constructs revealed a high potential of the BioExtruder to produce 3D scaffolds with regular and reproducible macropore architecture, without inducing relevant chemical and biocompatibility alterations of the material.

6.
J Nanosci Nanotechnol ; 8(5): 2479-82, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18572668

RESUMEN

Investigation of the mechanical properties of materials at the nanoscale is often performed by atomic force microscopy nanoindentation. However, substrates with large surface roughness and heterogeneity demand careful data analysis. This requirement is even more stringent when surface indentations with a typical depth of a few nanometers are produced to test material hardness. Accordingly, we developed a geometrical model of the nanoindenter, which was first validated by measurements on a reference gold sample. Then we used this technique to investigate the mechanical properties of a coating layer made of Balinit C, a commercially available alloy with superior anti-wear features deposited on steel. The reported results support the feasibility of reliable hardness measurements with truly nanosized indents.

7.
Microsc Res Tech ; 71(7): 529-35, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18393303

RESUMEN

Atomic force microscopy (AFM) has been applied for determining the topological and structural features of rabbit spermatozoa. Fresh ejaculated spermatozoa were adsorbed passively onto a silicon slide or by motility from suspension onto a poly(L-lysine)-coated glass coverslip and then imaged in air and in buffer saline, respectively. AFM images clearly highlighted many details of spermatozoa head, neck, and tail. Distinct features were observed in the plasmatic membrane of spermatozoa. In particular, head topography easily recognized the acrosome, equatorial segment, equatorial subsegment, and postacrosome regions. Moreover, AFM images revealed the presence of double belt of invaginations around the spermatozoa head, at the boundary between equatorial subsegment and postacrosome regions. All together, the collected AFM images clearly defined a detailed map of spermatozoa morphology while giving some hints on the internal structure.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Espermatozoides/citología , Animales , Tamaño de la Célula , Procesamiento de Imagen Asistido por Computador , Masculino , Conejos , Espermatozoides/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...