Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Genom Med ; 8(1): 4, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765070

RESUMEN

Autophagy regulates the degradation of damaged organelles and protein aggregates, and is critical for neuronal development, homeostasis, and maintenance, yet few neurodevelopmental disorders have been associated with pathogenic variants in genes encoding autophagy-related proteins. We report three individuals from two unrelated families with a neurodevelopmental disorder characterized by speech and motor impairment, and similar facial characteristics. Rare, conserved, bi-allelic variants were identified in ATG4D, encoding one of four ATG4 cysteine proteases important for autophagosome biogenesis, a hallmark of autophagy. Autophagosome biogenesis and induction of autophagy were intact in cells from affected individuals. However, studies evaluating the predominant substrate of ATG4D, GABARAPL1, demonstrated that three of the four ATG4D patient variants functionally impair ATG4D activity. GABARAPL1 is cleaved or "primed" by ATG4D and an in vitro GABARAPL1 priming assay revealed decreased priming activity for three of the four ATG4D variants. Furthermore, a rescue experiment performed in an ATG4 tetra knockout cell line, in which all four ATG4 isoforms were knocked out by gene editing, showed decreased GABARAPL1 priming activity for the two ATG4D missense variants located in the cysteine protease domain required for priming, suggesting that these variants impair the function of ATG4D. The clinical, bioinformatic, and functional data suggest that bi-allelic loss-of-function variants in ATG4D contribute to the pathogenesis of this syndromic neurodevelopmental disorder.

2.
Am J Med Genet A ; 188(10): 3089-3095, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946377

RESUMEN

Alternative use of short distance tandem sites such as NAGNn AG are a common mechanism of alternative splicing; however, single nucleotide variants are rarely reported as likely to generate or to disrupt tandem splice sites. We identify a pathogenic intron 5 STK11 variant (NM_000455.4:c.[735-6A>G];[=]) segregating with the mucocutaneous features but not the hamartomatous polyps of Peutz-Jeghers syndrome in two individuals. By RNAseq analysis of peripheral blood mRNA, this variant was shown to generate a novel and preferentially used tandem proximal splice acceptor (AAGTGAAG). The variant transcript (NM_000455.4:c.734_734 + 1insTGAAG), which encodes a frameshift (p.[Tyr246Glufs*43]) constituted 36%-43% of STK11 transcripts suggesting partial escape from nonsense mediated mRNA decay and translation of a truncated protein. A review of the ClinVar database identified other similar variants. We suggest that nucleotide changes creating or disrupting tandem alternative splice sites are a pertinent disease mechanism and require contextualization for clinical reporting. Additionally, we hypothesize that some pathogenic STK11 variants cause an attenuated phenotype.


Asunto(s)
Síndrome de Peutz-Jeghers , Quinasas de la Proteína-Quinasa Activada por el AMP , Empalme Alternativo , Codón sin Sentido , Humanos , Nucleótidos , Síndrome de Peutz-Jeghers/genética , Síndrome de Peutz-Jeghers/patología
3.
HGG Adv ; 3(3): 100108, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35599849

RESUMEN

Genome-wide sequencing (GWS) is a standard of care for diagnosis of suspected genetic disorders, but the proportion of patients found to have pathogenic or likely pathogenic variants ranges from less than 30% to more than 60% in reported studies. It has been suggested that the diagnostic rate can be improved by interpreting genomic variants in the context of each affected individual's full clinical picture and by regular follow-up and reinterpretation of GWS laboratory results. Trio exome sequencing was performed in 415 families and trio genome sequencing in 85 families in the CAUSES study. The variants observed were interpreted by a multidisciplinary team including laboratory geneticists, bioinformaticians, clinical geneticists, genetic counselors, pediatric subspecialists, and the referring physician, and independently by a clinical laboratory using standard American College of Medical Genetics and Genomics (ACMG) criteria. Individuals were followed for an average of 5.1 years after testing, with clinical reassessment and reinterpretation of the GWS results as necessary. The multidisciplinary team established a diagnosis of genetic disease in 43.0% of the families at the time of initial GWS interpretation, and longitudinal follow-up and reinterpretation of GWS results produced new diagnoses in 17.2% of families whose initial GWS interpretation was uninformative or uncertain. Reinterpretation also resulted in rescinding a diagnosis in four families (1.9%). Of the families studied, 33.6% had ACMG pathogenic or likely pathogenic variants related to the clinical indication. Close collaboration among clinical geneticists, genetic counselors, laboratory geneticists, bioinformaticians, and individuals' primary physicians, with ongoing follow-up, reanalysis, and reinterpretation over time, can improve the clinical value of GWS.

4.
Eur J Med Genet ; 65(3): 104427, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35063693

RESUMEN

Disease-associated variants in KIAA1109 associate with autosomal recessive Alkuraya-Kucinskas syndrome, which is typified by cerebral parenchymal underdevelopment, clubfeet, and arthrogryposis. Biallelic truncating variants occur with severe disease resulting in miscarriage or early neonatal death, whereas biallelic missense variants can occur with a milder phenotype of global developmental delay and intracranial malformation. This suggests that hypomorphic alleles in KIAA1109 give rise to a milder phenotype than do amorphic alleles. We describe a consanguineous family with pseudodominant segregation of a homozygous noncanonical splice donor variant (NM_015312.2:c.[13438+3A>G];[13438+3A>G]) in mother and daughter. In peripheral blood, sequencing of cDNA detected skipping of exon 76 (NM_015312.3:c.13281_13438del) and, by qRT-PCR quantification, occurred in 82-95% of peripheral blood KIAA1109 mRNA. Although the deletion of exon 76 is predicted to encode p.(Trp4428Serfs*4), 46-83% of KIAA1109 mRNA in peripheral blood evaded nonsense mediated mRNA decay as measured by qRT-PCR. These observations expand understanding of the genotype-phenotype association in KIAA1109-related disease and suggest hypotheses for milder presentations of Alkuraya-Kucinskas syndrome.


Asunto(s)
Codón sin Sentido , Empalme del ARN , Variación Biológica Poblacional , Estudios de Asociación Genética , Humanos , Linaje
5.
Front Med (Lausanne) ; 9: 1071348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714130

RESUMEN

Genomic medicine, an emerging medical discipline, applies the principles of evolution, developmental biology, functional genomics, and structural genomics within clinical care. Enabling widespread adoption and integration of genomic medicine into clinical practice is key to achieving precision medicine. We delineate a biological framework defining diagnostic utility of genomic testing and map the process of genomic medicine to inform integration into clinical practice. This process leverages collaboration and collective cognition of patients, principal care providers, clinical genomic specialists, laboratory geneticists, and payers. We detail considerations for referral, triage, patient intake, phenotyping, testing eligibility, variant analysis and interpretation, counseling, and management within the utilitarian limitations of health care systems. To reduce barriers for clinician engagement in genomic medicine, we provide several decision-making frameworks and tools and describe the implementation of the proposed workflow in a prototyped electronic platform that facilitates genomic care. Finally, we discuss a vision for the future of genomic medicine and comment on areas for continued efforts.

6.
Am J Hum Genet ; 105(3): 631-639, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31353024

RESUMEN

Notch signaling is an established developmental pathway for brain morphogenesis. Given that Delta-like 1 (DLL1) is a ligand for the Notch receptor and that a few individuals with developmental delay, intellectual disability, and brain malformations have microdeletions encompassing DLL1, we hypothesized that insufficiency of DLL1 causes a human neurodevelopmental disorder. We performed exome sequencing in individuals with neurodevelopmental disorders. The cohort was identified using known Matchmaker Exchange nodes such as GeneMatcher. This method identified 15 individuals from 12 unrelated families with heterozygous pathogenic DLL1 variants (nonsense, missense, splice site, and one whole gene deletion). The most common features in our cohort were intellectual disability, autism spectrum disorder, seizures, variable brain malformations, muscular hypotonia, and scoliosis. We did not identify an obvious genotype-phenotype correlation. Analysis of one splice site variant showed an in-frame insertion of 12 bp. In conclusion, heterozygous DLL1 pathogenic variants cause a variable neurodevelopmental phenotype and multi-systemic features. The clinical and molecular data support haploinsufficiency as a mechanism for the pathogenesis of this DLL1-related disorder and affirm the importance of DLL1 in human brain development.


Asunto(s)
Proteínas de Unión al Calcio/genética , Haploinsuficiencia , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Estudios de Cohortes , Femenino , Humanos , Ligandos , Masculino , Linaje , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...