Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Surf ; 8: 100088, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36405350

RESUMEN

Mycobacterium tuberculosis causes the disease tuberculosis and affects a third of the world's population. The recent COVID-19 pandemic exacerbated the situation with a projected 27% increase in tuberculosis related deaths. M. tuberculosis has an elaborate cell wall consisting of peptidoglycan, arabinogalactan and mycolic acids which shield the bacilli from the toxic bactericidal milieu within phagocytes. Amongst, the numerous glycosyltransferase enzymes involved in mycobacterial cell wall biosynthesis, arabinofuranosyltransferase C (aftC) is responsible for the branching of the arabinan domain in both arabinogalactan and lipoarabinomannan. Using Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) we have generated aftC knockdowns in Mycobacterium bovis BCG and demonstrated the generation of a truncated, immunogenic lipoarabinomannan within its cell envelope. The aftC depleted BCG mutants were unable to form characteristic mycobacterial pellicular biofilms and elicit a potent immunostimulatory phenotype compared to wild type M. bovis BCG in a THP1 cell line. This study paves the way to further explore novel BCG mutants as promising vaccine boosters in preventing pulmonary tuberculosis.

2.
Cell Chem Biol ; 29(3): 502-516.e7, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34520744

RESUMEN

The sodium iodide symporter (NIS) functions to transport iodide and is critical for successful radioiodide ablation of cancer cells. Approaches to bolster NIS function and diminish recurrence post-radioiodide therapy are impeded by oncogenic pathways that suppress NIS, as well as the inherent complexity of NIS regulation. Here, we utilize NIS in high-throughput drug screening and undertake rigorous evaluation of lead compounds to identify and target key processes underpinning NIS function. We find that multiple proteostasis pathways, including proteasomal degradation and autophagy, are central to the cellular processing of NIS. Utilizing inhibitors targeting distinct molecular processes, we pinpoint combinatorial drug strategies giving robust >5-fold increases in radioiodide uptake. We also reveal significant dysregulation of core proteostasis genes in human tumors, identifying a 13-gene risk score classifier as an independent predictor of recurrence in radioiodide-treated patients. We thus propose and discuss a model for targetable steps of intracellular processing of NIS function.


Asunto(s)
Neoplasias , Simportadores , Transporte Biológico , Humanos , Simportadores/genética , Simportadores/metabolismo
3.
Cell Surf ; 7: 100065, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34778603

RESUMEN

The development of new vaccines for TB needs to be underpinned by an understanding of both the molecular and cellular mechanisms of host-pathogen interactions and how the immune response can be modulated to achieve protection from disease. Complement orchestrates many aspects of the innate and adaptive immune responses. However, little is known about the contribution of the complement pathways during TB disease, particularly with respect to mycobacterial phenotype. Extracellular communities (biofilms) of M. tuberculosis are found in the acellular rim of granulomas, during disease, and these are likely to be present in post-primary TB episodes, in necrotic lesions. Our study aimed to determine which mycobacterial cell wall components were altered during biofilm growth and how these cell wall alterations modified the complement response. We have shown that M. tuberculosis biofilms modified their cell wall carbohydrates and elicited reduced classical and lectin pathway activation. Consistent with this finding was the reduction of C3b/iC3b deposition on biofilm cell wall carbohydrate extracts. Here, we have highlighted the role of cell wall carbohydrate alterations during biofilm growth of M. tuberculosis and subsequent modulation of complement activation.

4.
Comput Struct Biotechnol J ; 19: 3708-3719, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34285773

RESUMEN

Mycobacterium tuberculosis is the causative agent of TB and was estimated to cause 1.4 million death in 2019, alongside 10 million new infections. Drug resistance is a growing issue, with multi-drug resistant infections representing 3.3% of all new infections, hence novel antimycobacterial drugs are urgently required to combat this growing health emergency. Alongside this, increased knowledge of gene essentiality in the pathogenic organism and larger compound databases can aid in the discovery of new drug compounds. The number of protein structures, X-ray based and modelled, is increasing and now accounts for greater than > 80% of all predicted M. tuberculosis proteins; allowing novel targets to be investigated. This review will focus on structure-based in silico approaches for drug discovery, covering a range of complexities and computational demands, with associated antimycobacterial examples. This includes molecular docking, molecular dynamic simulations, ensemble docking and free energy calculations. Applications of machine learning onto each of these approaches will be discussed. The need for experimental validation of computational hits is an essential component, which is unfortunately missing from many current studies. The future outlooks of these approaches will also be discussed.

5.
Bioorg Med Chem ; 28(22): 115744, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33007556

RESUMEN

Multi-drug resistant tuberculosis (MDR-TB) represents a growing problem for global healthcare systems. In addition to 1.3 million deaths in 2018, the World Health Organisation reported 484,000 new cases of MDR-TB. Isoniazid is a key anti-TB drug that inhibits InhA, a crucial enzyme in the cell wall biosynthesis pathway and identical in Mycobacterium tuberculosis and M. bovis. Isoniazid is a pro-drug which requires activation by the enzyme KatG, mutations in KatG prevent activation and confer INH-resistance. 'Direct inhibitors' of InhA are attractive as they would circumvent the main clinically observed resistance mechanisms. A library of new 1,5-triazoles, designed to mimic the structures of both triclosan molecules uniquely bound to InhA have been synthesised. The inhibitory activity of these compounds was evaluated using isolated enzyme assays with 2 (5-chloro-2-(4-(5-(((4-(4-chloro-2-hydroxyphenoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) exhibiting an IC50 of 5.6 µM. Whole-cell evaluation was also performed, with 11 (5-chloro-2-(4-(5-(((4-(cyclopropylmethoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) showing the greatest potency, with an MIC99 of 12.9 µM against M. bovis.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Triclosán/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas/metabolismo , Relación Estructura-Actividad , Triclosán/síntesis química , Triclosán/química , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/metabolismo
6.
mBio ; 11(4)2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665275

RESUMEN

Active efflux of antibiotics preventing their accumulation to toxic intracellular concentrations contributes to clinically relevant multidrug resistance. Inhibition of active efflux potentiates antibiotic activity, indicating that efflux inhibitors could be used in combination with antibiotics to reverse drug resistance. Expression of ramA by Salmonella enterica serovar Typhimurium increases in response to efflux inhibition, irrespective of the mode of inhibition. We hypothesized that measuring ramA promoter activity could act as a reporter of efflux inhibition. A rapid, inexpensive, and high-throughput green fluorescent protein (GFP) screen to identify efflux inhibitors was developed, validated, and implemented. Two chemical compound libraries were screened for compounds that increased GFP production. Fifty of the compounds in the 1,200-compound Prestwick chemical library were identified as potential efflux inhibitors, including the previously characterized efflux inhibitors mefloquine and thioridazine. There were 107 hits from a library of 47,168 proprietary compounds from L. Hoffmann La Roche; 45 were confirmed hits, and a dose response was determined. Dye efflux and accumulation assays showed that 40 Roche and three Prestwick chemical library compounds were efflux inhibitors. Most compounds had specific efflux-inhibitor-antibiotic combinations and/or species-specific synergy in antibiotic disc diffusion and checkerboard assays performed with Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and Salmonella Typhimurium. These data indicate that both narrow-spectrum and broad-spectrum combinations of efflux inhibitors with antibiotics can be found. Eleven novel efflux inhibitor compounds potentiated antibiotic activities against at least one species of Gram-negative bacteria, and data revealing an E. coli mutant with loss of AcrB function suggested that these are AcrB inhibitors.IMPORTANCE Multidrug-resistant Gram-negative bacteria pose a serious threat to human and animal health. Molecules that inhibit multidrug efflux offer an alternative approach to resolving the challenges caused by antibiotic resistance, by potentiating the activity of old, licensed, and new antibiotics. We have developed, validated, and implemented a high-throughput screen and used it to identify efflux inhibitors from two compound libraries selected for their high chemical and pharmacological diversity. We found that the new high-throughput screen is a valuable tool to identify efflux inhibitors, as evidenced by the 43 new efflux inhibitors described in this study.


Asunto(s)
Antibacterianos/farmacología , Transporte Biológico/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Bacterianas/genética , Descubrimiento de Drogas , Farmacorresistencia Bacteriana Múltiple , Ensayos Analíticos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Salmonella enterica/efectos de los fármacos , Salmonella enterica/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Transactivadores/genética
7.
mBio ; 11(1)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098822

RESUMEN

Antimicrobial-resistant (AMR) infections pose a serious risk to human and animal health. A major factor contributing to this global crisis is the sharing of resistance genes between different bacteria via plasmids. The WHO lists Enterobacteriaceae, such as Escherichia coli and Klebsiella pneumoniae, producing extended-spectrum ß-lactamases (ESBL) and carbapenemases as "critical" priorities for new drug development. These resistance genes are most often shared via plasmid transfer. However, finding methods to prevent resistance gene sharing has been hampered by the lack of screening systems for medium-/high-throughput approaches. Here, we have used an ESBL-producing plasmid, pCT, and a carbapenemase-producing plasmid, pKpQIL, in two different Gram-negative bacteria, E. coli and K. pneumoniae Using these critical resistance-pathogen combinations, we developed an assay using fluorescent proteins, flow cytometry, and confocal microscopy to assess plasmid transmission inhibition within bacterial populations in a medium-throughput manner. Three compounds with some reports of antiplasmid properties were tested; chlorpromazine reduced transmission of both plasmids and linoleic acid reduced transmission of pCT. We screened the Prestwick library of over 1,200 FDA-approved drugs/compounds. From this, we found two nucleoside analogue drugs used to treat HIV, abacavir and azidothymidine (AZT), which reduced plasmid transmission (AZT, e.g., at 0.25 µg/ml reduced pCT transmission in E. coli by 83.3% and pKpQIL transmission in K. pneumoniae by 80.8% compared to untreated controls). Plasmid transmission was reduced by concentrations of the drugs which are below peak serum concentrations and are achievable in the gastrointestinal tract. These drugs could be used to decolonize humans, animals, or the environment from AMR plasmids.IMPORTANCE More and more bacterial infections are becoming resistant to antibiotics. This has made treatment of many infections very difficult. One of the reasons this is such a large problem is that bacteria are able to share their genetic material with other bacteria, and these shared genes often include resistance to a variety of antibiotics, including some of our drugs of last resort. We are addressing this problem by using a fluorescence-based system to search for drugs that will stop bacteria from sharing resistance genes. We uncovered a new role for two drugs used to treat HIV and show that they are able to prevent the sharing of two different types of resistance genes in two unique bacterial strains. This work lays the foundation for future work to reduce the prevalence of resistant infections.


Asunto(s)
Antibacterianos/farmacología , Fármacos Anti-VIH/farmacología , Proteínas Bacterianas/genética , Transferencia de Gen Horizontal/efectos de los fármacos , Plásmidos/genética , beta-Lactamasas/genética , Didesoxinucleósidos , Farmacorresistencia Bacteriana/efectos de los fármacos , Enterobacteriaceae/genética , Escherichia coli/genética , Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH , Klebsiella pneumoniae/genética , Zidovudina
8.
Artículo en Inglés | MEDLINE | ID: mdl-31287916

RESUMEN

RATIONALE: Lipids are important mycobacterium cell wall constituents; changes are linked with drug resistance. Liquid extraction surface analysis (LESA) enables direct sampling in a highly sensitive manner. Here we describe protocols for the analysis of lipids from bacterial colonies. Lipids form various adducts, complicating spectra. Salt additives were investigated to circumvent this problem. METHODS: Chloroform:methanol mixtures were studied for lipid extraction and analysis by LESA-MS. The inclusion of (ESI-compatible) acetate salts of sodium, potassium or lithium in the extraction solvent was investigated. RESULTS: We report the detection of bacterial cell wall lipids from mycobacterial species using LESA for the first time. Sampling protocols were optimised for the use of volatile extraction solvents. The inclusion of acetate salt additives in the sampling solvent significantly reduces spectral complexity in comparison with no additives being used. CONCLUSIONS: LESA offers a sensitive technique for bacterial lipid phenotyping. The inclusion of an acetate salt in the sampling solvent drives adduct formation towards a specific adduct type and thus significantly reduces spectral complexity.

9.
J Biol Chem ; 294(18): 7348-7359, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30877199

RESUMEN

A growing body of evidence implicates the mycobacterial capsule, the outermost layer of the mycobacterial cell envelope, in modulation of the host immune response and virulence of mycobacteria. Mycobacteria synthesize the dominant capsule component, α(1→4)-linked glucan, via three interconnected and potentially redundant metabolic pathways. Here, we report the crystal structure of the Mycobacterium smegmatis TreS:Pep2 complex, containing trehalose synthase (TreS) and maltokinase (Pep2), which converts trehalose to maltose 1-phosphate as part of the TreS:Pep2-GlgE pathway. The structure, at 3.6 Å resolution, revealed that a diamond-shaped TreS tetramer forms the core of the complex and that pairs of Pep2 monomers bind to opposite apices of the tetramer in a 4 + 4 configuration. However, for the M. smegmatis orthologues, results from isothermal titration calorimetry and analytical ultracentrifugation experiments indicated that the prevalent stoichiometry in solution is 4 TreS + 2 Pep2 protomers. The observed discrepancy between the crystallized complex and the behavior in the solution state may be explained by the relatively weak affinity of Pep2 for TreS (Kd 3.5 µm at mildly acidic pH) and crystal packing favoring the 4 + 4 complex. Proximity of the ATP-binding site in Pep2 to the complex interface provides a rational basis for rate enhancement of Pep2 upon binding to TreS, but the complex structure appears to rule out substrate channeling between the active sites of TreS and Pep2. Our findings provide a structural model for the trehalose synthase:maltokinase complex in M. smegmatis that offers critical insights into capsule assembly.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucanos/biosíntesis , Glucosiltransferasas/metabolismo , Mycobacterium smegmatis/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Glucosiltransferasas/química , Mycobacterium smegmatis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Conformación Proteica , Soluciones
10.
PLoS One ; 14(3): e0213713, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30861059

RESUMEN

Tuberculosis (TB) is an infectious bacterial disease that kills approximately 1.3 million people every year. Despite global efforts to reduce both the incidence and mortality associated with TB, the emergence of drug resistant strains has slowed any progress made towards combating the spread of this deadly disease. The current TB drug regimen is inadequate, takes months to complete and poses significant challenges when administering to patients suffering from drug resistant TB. New treatments that are faster, simpler and more affordable are urgently required. Arguably, a good strategy to discover new drugs is to start with an old drug. Here, we have screened a library of 1200 FDA approved drugs from the Prestwick Chemical library using a GFP microplate assay. Drugs were screened against GFP expressing strains of Mycobacterium smegmatis and Mycobacterium bovis BCG as surrogates for Mycobacterium tuberculosis, the causative agent of TB in humans. We identified several classes of drugs that displayed antimycobacterial activity against both M. smegmatis and BCG, however each organism also displayed some selectivity towards certain drug classes. Variant analysis of whole genomes sequenced for resistant mutants raised to florfenicol, vanoxerine and pentamidine highlight new pathways that could be exploited in drug repurposing programmes.


Asunto(s)
Antibacterianos/farmacología , Antituberculosos/farmacología , Reposicionamiento de Medicamentos/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Agar/química , Antiinfecciosos/farmacología , Diseño de Fármacos , Proteínas Fluorescentes Verdes/química , Células Hep G2 , Humanos , Mutación , Mycobacterium bovis/efectos de los fármacos , Mycobacterium smegmatis/efectos de los fármacos , Pentamidina/farmacología , Piperazinas/farmacología , Polimorfismo de Nucleótido Simple , Tianfenicol/análogos & derivados , Tianfenicol/farmacología , Estados Unidos , United States Food and Drug Administration
11.
Sci Rep ; 8(1): 12664, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30140040

RESUMEN

Mycobacterium tuberculosis, the causative agent of tuberculosis, has surpassed HIV as the leading cause of death due to an infectious disease worldwide, being responsible for more than 1.5 million deaths in low-income countries. In response to a pandemic threat by drug resistant strains, the tuberculosis research community is searching for new chemical entities with novel mechanisms of action to avoid drug resistance and shorten treatment regimens using combinatorial chemotherapy. Herein, we have identified several novel chemical scaffolds, GSK97C (spiro-oxazolidin-2-one), GSK93A (2-amino-1,3-thiazole, GSK85A and GSK92A (enamides), which target M. tuberculosis aspartyl-tRNA synthetase (Mt-AspRS), an essential component of the protein synthesis machinery of tuberculosis, using a whole-cell target-based screening strategy against a genetically modified Mycobacterium bovis BCG strain. We also provide further evidence of protein inhibition and inhibitor profiling through a classical aminoacylation reaction and a tRNA-independent assay, respectively. Altogether, our results have identified a number of hit new molecules with novel mechanism of action for further development through medicinal chemistry as hits and leads.


Asunto(s)
Antituberculosos/farmacología , Aspartato-ARNt Ligasa/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Pruebas de Sensibilidad Microbiana , Mycobacterium bovis/efectos de los fármacos , Mycobacterium bovis/enzimología
12.
Cell Surf ; 2: 38-53, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30046665

RESUMEN

The arabinan-containing polysaccharides, arabinogalactan (AG) and lipoarabinomannan (LAM), are key cell wall components of the Corynebacterineae, which include Corynebacteria, Norcadia and Mycobacteria. Both AG and LAM contain elaborate arabinan domains composed of distinct structural motifs. Mycobacterial EmbA, EmbB and EmbC, collectively known as the Emb proteins, have been identified as arabinosyltransferases (ArafTs), which are targeted by the front-line anti-tubercular drug ethambutol. Previous studies have established that EmbA and EmbB play a role in the synthesis of the characteristic terminal hexa-arabinosuranosyl motif, whilst EmbC is involved exclusively in the biosynthesis of LAM. Herein, we have investigated the role of the singular Emb protein from Corynebacterium glutamicum through the detailed biochemical and chemical analysis of a double ΔaftAΔemb mutant, where the priming Cg-AftA protein, which generates the substrate for Cg-Emb has been deleted. Analysis of its cell wall revealed a complete absence of arabinose resulting in a truncated cell wall containing only a galactan backbone accompanied with complete loss of cell wall bound mycolates. In vitro cell-free assays using C. glutamicumΔaftA, C. glutamicumΔemb, C. glutamicumΔaftAΔemb and C. glutamicumΔaftBΔaftD and two synthetic acceptors, which mimick the arabinofuranose (Araf) "primed" galactan chain, demonstrated that Cg-Emb is able to transfer an Araf residue to the C5 of the Araf positioned on the synthetic acceptor(s). These results indicate that Cg-Emb acts as an α(1 → 5) ArafT and elongates the arabinan core during the early stages of arabinan biosynthesis in C. glutamicum.

13.
Chembiochem ; 19(19): 2072-2080, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-29999233

RESUMEN

STE20/SPS1-related proline/alanine-rich kinase (SPAK) and oxidative-stress-responsive kinase 1 (OSR1) are two serine/threonine protein kinases that play key roles in regulating ion homeostasis. Various SPAK and OSR1 mouse models exhibited reduced blood pressure. Herein, the discovery of verteporfin, a photosensitising agent used in photodynamic therapy, as a potent inhibitor of SPAK and OSR1 kinases is reported. It is shown that verteporfin binds the kinase domains of SPAK and OSR1 and inhibits their catalytic activity in an adenosine triphosphate (ATP)-independent manner. In cells, verteporfin was able to suppress the phosphorylation of the ion co-transporter NKCC1; a downstream physiological substrate of SPAK and OSR1 kinases. Kinase panel screening indicated that verteporfin inhibited a further eight protein kinases more potently than that of SPAK and OSR1. Although verteporfin has largely been studied as a modifier of the Hippo signalling pathway, this work indicates that the WNK-SPAK/OSR1 signalling cascade is also a target of this clinical agent. This finding could explain the fluctuation in blood pressure noted in patients and animals treated with this drug.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal/efectos de los fármacos , Verteporfina/farmacología , Células HEK293 , Homeostasis , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
14.
Cell Surf ; 1: 2-14, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29998212

RESUMEN

Arabinogalactan (AG) is an essential structural macromolecule present in the cell wall of Mycobacterium tuberculosis, serving to connect peptidoglycan with the outer mycolic acid layer. The D-arabinan segment is a highly branched component of AG and is assembled in a step-wise fashion by a variety of arabinofuranosyltransferases (AraT). We have previously used Corynebacterium glutamicum as a model organism to study these complex processes which are otherwise essential in mycobacteria. In order to further our understanding of the molecular basis of AG assembly, we investigated the role of a fourth AraT, now termed AftD by generating single (ΔaftD) and double deletion (ΔaftB ΔaftD) mutants of C. glutamicum. We demonstrate that AftD functions as an α(1 → 5) AraT and reveal the point at which it exerts its activity in the AG biosynthetic pathway.

15.
ChemMedChem ; 12(9): 639-645, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28371477

RESUMEN

SPAK and OSR1 are two protein kinases that have emerged as attractive targets in the discovery of novel antihypertensive agents due to their role in regulating electrolyte balance in vivo. Herein we report the identification of an allosteric pocket on the highly conserved C-terminal domains of these two kinases, which influences their activity. We also show that some known WNK signaling inhibitors bind to this allosteric site. Using in silico screening, we identified the antiparasitic agent rafoxanide as a novel allosteric inhibitor of SPAK and OSR1. Collectively, this work will facilitate the rational design of novel SPAK and OSR1 kinase inhibitors that could be useful antihypertensive agents.


Asunto(s)
Colesterol/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Rafoxanida/farmacología , Sitio Alostérico , Secuencia de Aminoácidos , Polarización de Fluorescencia , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Chembiochem ; 18(5): 460-465, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28004876

RESUMEN

The binding of the scaffolding protein MO25 to SPAK and OSR1 protein kinases, which regulate ion homeostasis, causes increases of up to 100-fold in their catalytic activity. Various animal models have shown that the inhibition of SPAK and OSR1 lowers blood pressure, and so here we present a new indirect approach to inhibiting SPAK and OSR1 kinases by targeting their protein partner MO25. To explore this approach, we developed a fluorescent polarisation assay and used it in screening of a small in-house library of ≈4000 compounds. This led to the identification of one compound-HK01-as the first small-molecule inhibitor of the MO25-dependent activation of SPAK and OSR1 in vitro. Our data confirm the feasibility of targeting this protein-protein interaction by small-molecule compounds and highlights their potential to modulate ion co-transporters and thus cellular electrolyte balance.


Asunto(s)
Fenilalanina/análogos & derivados , Ftalimidas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sitios de Unión , Bioensayo , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Immunoblotting , Ratones , Fenilalanina/química , Fenilalanina/metabolismo , Ftalimidas/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Equilibrio Hidroelectrolítico/efectos de los fármacos
17.
ACS Chem Biol ; 12(1): 183-190, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28033704

RESUMEN

Lipoarabinomannan (LAM) and arabinogalactan (AG) are the two major mycobacterial cell wall (lipo)polysaccharides, which contain a structurally similar arabinan domain that is highly branched and assembled in a stepwise fashion by variety of arabinofuranosyltransferases (ArafT). In addition to playing an essential role in mycobacterial physiology, LAM and its biochemical precursor lipomannan possess potent immunomodulatory activities that affect the host immune response. In the search of additional mycobacterial ArafTs that participate in the synthesis of the arabinan segment of LAM, we disrupted aftB (MSMEG_6400) in Mycobacterium smegmatis. The deletion of chromosomal aftB locus could only be achieved in the presence of a rescue plasmid carrying a functional copy of aftB, strongly suggesting that it is essential for the viability of M. smegmatis. Isolation and detailed structural characterization of a LAM molecule derived from the conditional mutant deficient in AftB revealed the absence of terminal ß(1 → 2)-linked arabinofuranosyl residues. Furthermore, we demonstrated that truncated LAM displays proinflammatory activity, which is due to its ability to activate Toll-like receptor 2. All together, our results indicate that AftB is an essential mycobacterial ArafT that plays a role in the synthesis of the arabinan domain of LAM.


Asunto(s)
Arabinosa/análogos & derivados , Proteínas Bacterianas/metabolismo , Lipopolisacáridos/metabolismo , Mycobacterium smegmatis/metabolismo , Arabinosa/metabolismo , Proteínas Bacterianas/genética , Línea Celular , Citocinas/biosíntesis , Expresión Génica , Humanos , Inmunidad Innata , Lipopolisacáridos/química , Mutación , Mycobacterium smegmatis/genética , Receptor Toll-Like 2/metabolismo
18.
mBio ; 7(4)2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27486192

RESUMEN

UNLABELLED: Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has a unique cell envelope which accounts for its unusual low permeability and contributes to resistance against common antibiotics. The main structural elements of the cell wall consist of a cross-linked network of peptidoglycan (PG) in which some of the muramic acid residues are covalently attached to a complex polysaccharide, arabinogalactan (AG), via a unique α-l-rhamnopyranose-(1→3)-α-d-GlcNAc-(1→P) linker unit. While the molecular genetics associated with PG and AG biosynthetic pathways have been largely delineated, the mechanism by which these two major pathways converge has remained elusive. In Gram-positive organisms, the LytR-CpsA-Psr (LCP) family of proteins are responsible for ligating cell wall teichoic acids to peptidoglycan, through a linker unit that bears a striking resemblance to that found in mycobacterial arabinogalactan. In this study, we have identified Rv3267 as a mycobacterial LCP homolog gene that encodes a phosphotransferase which we have named Lcp1. We demonstrate that lcp1 is an essential gene required for cell viability and show that recombinant Lcp1 is capable of ligating AG to PG in a cell-free radiolabeling assay. IMPORTANCE: Tuberculosis is an infectious disease caused by the bacterial organism Mycobacterium tuberculosis Survival of M. tuberculosis rests critically on the integrity of its unique cell wall; therefore, a better understanding of how the genes and enzymes involved in cell wall assembly work is fundamental for us to develop new drugs to treat this disease. In this study, we have identified Lcp1 as an essential phosphotransferase that ligates together arabinogalactan and peptidoglycan, two crucial cell wall macromolecules found within the mycobacterial cell wall. The discovery of Lcp1 sheds new light on the final stages of mycobacterial cell wall assembly and represents a key biosynthetic step that could be exploited for new anti-TB drug discovery.


Asunto(s)
Galactanos/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Peptidoglicano/metabolismo , Fosfotransferasas/metabolismo , Genes Esenciales , Viabilidad Microbiana , Mycobacterium tuberculosis/genética , Fosfotransferasas/genética
20.
Nat Commun ; 6: 8884, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26626559

RESUMEN

Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator's peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital - ΔBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morphology, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle.


Asunto(s)
Ancirinas/metabolismo , Proteínas Bacterianas/metabolismo , Bdellovibrio/fisiología , Escherichia coli , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...