Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 127(43): 9052-9068, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37856324

RESUMEN

The sequence of elementary steps leading to reductive ammonia formation from N2 and H2 catalyzed by a Fe16 cluster is studied using generalized gradient approximation density functional theory and an all-electron basis set of triple-ζ quality. The computational methods are validated by comparison to experimental data such as binding energies where possible. First, the associative and dissociative attachment of N2 to Fe16 is considered, followed by exploration of the pathways leading to distal (Fe16-N-NH2) and enzymatic (NFe16-NH2) formation of an amino group. Next, the pathways leading to NH3 formation in both distal and enzymatic cases are examined. Two mechanisms for NH3 detachment have been discovered. An interesting peculiarity of the pathways is that they often proceed with total spin fluctuations, which are related to the rupture and formation of bonds on the surface of the catalyst over the course of the reactions. The reaction Fe16 + N2 + 2H2 → Fe16NH + NH3 is found to be exothermic by 1.02 eV (93.8 kJ/mol).

2.
J Phys Chem Lett ; 14(3): 743-749, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36651858

RESUMEN

Herein, we show that thin films of MAPbI3, FAPbI3, (CsMA)PbI3, and (CsMAFA)PbI3, where MA and FA are methylammonium and formamidinium cations, respectively, tolerate ultrahigh doses of γ rays approaching 10 MGy without significant changes in their absorption spectra. However, among the studied materials, FAPbI3 was the only one that did not form metallic lead due to its extreme radiation hardness. Infrared near-field optical microscopy revealed the radiation-induced depletion of organic cations from the grains of MAPbI3 and their accumulation at the grain boundaries, whereas FAPbI3 on the contrary lost FA cations from the grain boundaries. The multication (CsMAFA)PbI3 perovskite underwent a facile phase segregation to domains enriched with MA and FA cations, which is a principally new radiation-induced degradation pathway. Our findings suggest that the radiation hardness of the rationally designed perovskite semiconductors could go far beyond the impressive threshold of 10 MGy we set herein for FAPbI3 films, which opens many exciting opportunities for practical implementation of these materials.

3.
Small Methods ; 6(12): e2201142, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36333209

RESUMEN

Although birnessite-type manganese dioxide (δ-MnO2 ) with a large interlayer spacing (≈7 Å) is a promising cathode candidate for aqueous Zn/MnO2 batteries, the poor structural stability associated with Zn2+ intercalation/deintercalation limits its further practical application. Herein, δ-MnO2 ultrathin nanosheets are coupled with reduced graphene oxide (rGO) via van der Waals (vdW) self-assembly in a vacuum freeze-drying process. It is interesting to find that the presence of vdW interaction between δ-MnO2 and rGO can effectively suppress the layered-to-spinel phase transition in δ-MnO2 during cycling. As a result, the coupled δ-MnO2 /rGO hybrid cathode with a sandwich-like heterostructure exhibits remarkable cycle performance with 80.1% capacity retained after 3000 cycles at 2.0 A g-1 . The first principle calculations demonstrate that the strong interfacial interaction between δ-MnO2 and rGO results in improved electron transfer and strengthened layered structure for δ-MnO2 . This work establishes a viable strategy to mitigate the adverse layered-to-spinel phase transition in layered manganese oxide in aqueous energy storage systems.

4.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36232753

RESUMEN

The cationic complexes of Mn(III) with the 5-Hal-sal2323 (Hal = Cl, Br) ligands and a paramagnetic doubly charged counterion [ReCl6]2- have been synthesized: [Mn(5-Cl-sal2323)]2[ReCl6] (1) and [Mn(5-Br-sal2323)]2[ReCl6] (2). Their crystal structures and magnetic properties have been studied. These isostructural two-component ionic compounds show a thermally induced spin transition at high temperature associated with the cationic subsystem and a field-induced slow magnetic relaxation of magnetization at cryogenic temperature, associated with the anionic subsystem. The compounds are the first examples of the coexistence of spin crossover and field-induced slow magnetic relaxation in the family of known [MnIII(sal2323)] cationic complexes with various counterions.


Asunto(s)
Compuestos Organometálicos , Sales (Química) , Ligandos , Campos Magnéticos , Modelos Moleculares , Compuestos Organometálicos/química
5.
Molecules ; 27(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296478

RESUMEN

In this work a new donor of nitric oxide (NO) with antibacterial properties, namely nitrosyl iron complex of [Fe(C6H5C-SNH2)2(NO)2][Fe(C6H5C-SNH2)(S2O3)(NO)2] composition (complex I), has been synthesized and studied. Complex I was produced by the reduction of the aqueous solution of [Fe2(S2O3)2(NO)2]2- dianion by the thiosulfate, with the further treatment of the mixture by the acidified alcohol solution of thiobenzamide. Based on the structural study of I (X-ray analysis, quantum chemical calculations by NBO and QTAIM methods in the frame of DFT), the data were obtained on the presence of the NO…NO interactions, which stabilize the DNIC dimer in the solid phase. The conformation properties, electronic structure and free energies of complex I hydration were studied using B3LYP functional and the set of 6-31 + G(d,p) basis functions. The effect of an aquatic surrounding was taken into account in the frame of a polarized continuous model (PCM). The NO-donating activity of complex I was studied by the amperometry method using an "amiNO-700" sensor electrode of the "inNO Nitric Oxide Measuring System". The antibacterial activity of I was studied on gram-negative (Escherichia coli) and gram-positive (Micrococcus luteus) bacteria. Cytotoxicity was studied using Vero cells. Complex I was found to exhibit antibacterial activity comparable to that of antibiotics, and moderate toxicity to Vero cells.


Asunto(s)
Compuestos de Hierro , Óxido Nítrico , Animales , Chlorocebus aethiops , Óxido Nítrico/química , Tiosulfatos , Células Vero , Compuestos de Hierro/farmacología , Hierro/química , Antibacterianos/química , Escherichia coli
6.
Dalton Trans ; 51(44): 16876-16889, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36285977

RESUMEN

Synthesis and magnetic characterization of a family of cobalt-dioxolene complexes [(Me2TPA)Co(36-DBCat)] (1), [(Me2TPA)Co(36-DBCat)](PF6) (2) and [(Me2TPA)Co(diox-(OMe)3)](BPh4) (3) (Me2TPA = bis(6-methyl-2-pyridyl)methyl-(2-pyridylmethyl)amine; 36-DBCat = dianion of 3,6-di-tert-butylcatechol; diox-(OMe)3 - 2,5-di-tert-butyl-3,3,4-trimethoxy-6-oxocyclohexa-1,4-dienolate) is reported. The neutral complex 1 is found to form hexa- (CoO2N4, 1a) and pentacoordinated (CoO2N3, 1b) isomers. Variable temperature single crystal X-ray diffraction analysis of 1a and 1b clearly indicates the presence of the high-spin divalent metal ion and the dianionic catecholate form of the dioxolene ligand. Oxidation of 1 by ferrocenium hexafluorophosphate results in the formation of the ionic octahedral complex 2, demonstrating thermally induced valence-tautomeric transition (ls-CoIII-36-DBCat ⇄ hs-CoII-36-DBSQ) in the solid state with T1/2 = 175 K (36-DBSQ = radical-anionic semiquinonate form of the redox-ligand). In contrast, aerial oxidation of 1 is accompanied by changes in the structure of dioxolene resulting in oxocyclohexadienolate ligand and the formation of an ionic complex of high-spin divalent cobalt (3). Compounds 1a, 1b, and 3 are found to demonstrate a field-induced single-ion magnet behavior. The analysis of the electronic structures of 1, 2 and 3 with the aid of DFT and SA-CASSCF/NEVPT2 calculations is also given.

7.
Chemphyschem ; 23(21): e202200277, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-35654746

RESUMEN

Dissociation of CO2 on iron clusters was studied by using semilocal density functional theory and basis sets of triple-zeta quality. Fe2 , Fe4 , and Fe16 clusters were selected as the representative host clusters. When searching for isomers of Fen CO2 , n=2, 4 and 16 corresponding to carbon dioxide attachment to the host clusters, its reduction to O and CO, and to the complete dissociation, it was found that the total spin magnetic moments of the lowest energy states of the isomers are often quenched with respect to those of initial reagents Fen +CO2 . Dissociation pathways of the Fe2 +CO2 , Fe4 +CO2 , and Fe16 +CO2 reactions contain several transition states separated by the local minima states; therefore, a natural question is where do the spin flips occur? Since lifetimes of magnetically excited states were shown to be of the order of 100 fs, the search for the CO2 dissociation pathways was performed under the assumption that magnetic deexcitation may occur at the intermediate local minima. Two dissociation pathways were obtained for each Fen +CO2 reaction using the gradient-based methods. It was found that the Fe2 +CO2 reaction is endothermic with respect to both reduction and complete dissociation of CO2 , whereas the Fe4 +CO2 and Fe16 +CO2 reactions are exothermic to both reduction and complete dissociation of carbon dioxide. The CO2 reduction was found to be more favorable than its complete dissociation in the Fe4 case.


Asunto(s)
Dióxido de Carbono , Hierro , Dióxido de Carbono/metabolismo , Isomerismo
8.
J Phys Chem Lett ; 13(12): 2744-2749, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35315674

RESUMEN

Herein, we report the nanoscale visualization of the photochemical degradation dynamics of MAPbI3 (MA = CH3NH3+) using infrared scattering scanning near-field microscopy (IR s-SNOM) combined with a series of complementary analytical techniques such as UV-vis and FTIR-spectroscopy, XRD, and XPS. Light exposure of the MAPbI3 films resulted in a gradual loss of MA+ cations starting from the grain boundaries at the film surface and slowly progressing toward the center of the grains and deeper into the bulk perovskite phase. The binary lead iodide PbI2 was found to be the major perovskite photochemical degradation product under the experimental conditions used. Interestingly, the formation of the PbI2 skin over the perovskite grains resulted in a largely enhanced photoluminescence, which resembles the effects observed for core-shell quantum dots. The obtained results demonstrate that IR s-SNOM represents a powerful technique for studying the spatially resolved degradation dynamics of perovskite absorbers and revealing the associated material aging pathways.

9.
J Phys Chem A ; 125(36): 7891-7899, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34464135

RESUMEN

First-principles density functional theory calculations on neutral and singly negatively and positively charged iron clusters Fen and iron nitride clusters FenN and FenN2 (n = 1-10) in the range of 1 ≤ n ≤ 10 revealed that there is a strong competition between ferromagnetic and antiferromagnetic states especially in the FenN20,±1 cluster series. This phenomenon was related to superexchange via a bridging N atom between two iron atoms in the FenN20,±1 cluster series and to a double superexchange effect via a Fe atom shared by two N atoms in the FenN20,±1 series. A thorough examination of the structure-energy-spin state relationships in these clusters is conducted, leading to new insights and confirmation of available experimental results on structural parameters and dissociation energetics. The bond energies of both nitrogen atoms in the FenN2 series are approximately the same. They weakly depend on the charge of the host cluster and fluctuate around 5.5 eV when moving along the series. The energy of N2 desorption is relatively small; it varies by about 1.0 eV and depends on the charge of the cluster. The experimental finding that N2 dissociates on the Fen+ clusters beginning with n = 4 was supported by the results of our computations. Our computed values of the Fen+-N bonding energies agree with the experimental data within the experimental uncertainty bars. It was found that the attachment of one or two N atoms does not seriously affect the polarizability, electron affinity, or ionization energy of the host iron clusters independent of the charge.

10.
J Phys Chem Lett ; 12(18): 4362-4367, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33938752

RESUMEN

Regardless of the impressive photovoltaic performances demonstrated for lead halide perovskite solar cells, their practical implementation is severely impeded by the low device stability. Complex lead halides are sensitive to both light and heat, which are unavoidable under realistic solar cell operational conditions. Suppressing these intrinsic degradation pathways requires a thorough understanding of their mechanistic aspects. Herein, we explored the temperature effects in the light-induced decomposition of MAPbI3 and PbI2 thin films under anoxic conditions. The analysis of the aging kinetics revealed that MAPbI3 photolysis and PbI2 photolysis have quite high effective activation energies of ∼85 and ∼106 kJ mol-1, respectively, so decreasing the temperature from 55 to 30 °C can extend the perovskite lifetime by factors of >10-100. These findings suggest that controlling the temperature of the perovskite solar panels might allow the long operational lifetimes (>20 years) required for the practical implementation of this promising technology.

11.
ACS Appl Mater Interfaces ; 13(4): 5184-5194, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33474932

RESUMEN

All-inorganic lead halide perovskites, for example, CsPbI3, are becoming more attractive for applications as light absorbers in perovskite solar cells because of higher thermal and photochemical stability as compared to their hybrid analogues. However, a specific drawback of the CsPbI3 absorber consists of the rapid phase transition from black to yellow nonphotoactive phase at low temperatures (e.g., <100 °C), which is accelerated under exposure to light. Herein, an experimental screening of an unprecedently large series (>30) of metal cations in a wide range of concentration has allowed us to establish a set of Pb2+ substitutes, facilitating the crystallization of the photoactive black CsPbI3 phase at low temperatures. Importantly, the appropriate Pb2+ substitution with Ca2+, Sr2+, Ce3+, Nd3+, Gd3+, Tb3+, Dy2+, Er3+, Yb2+, Lu3+, and Pt2+ cations has led to a spectacular enhancement of the film stability under realistic solar cell operation conditions (∼1 sun equivalent light exposure, 50 °C). Optoelectronic, structural, and morphological effects of partial Pb2+ substitution were investigated, providing a deeper insight into the processes underlying the stabilization of the CsPbI3 films. Several CsPb1-xMxI∼3 systems were evaluated as absorber materials in perovskite solar cells, demonstrating encouraging light power conversion efficiency of 11.4% in preliminary experiments. The obtained results feature the potential of designing efficient and stable all-inorganic perovskite solar cells using novel absorber materials rationally designed via compositional engineering.

12.
Phys Chem Chem Phys ; 23(3): 2166-2178, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33438692

RESUMEN

The coalescence of two Fe8N as well as the structure of the Fe16N2 cluster were studied using density functional theory with the generalized gradient approximation and a basis set of triple-zeta quality. It was found that the coalescence may proceed without an energy barrier and that the geometrical structures of the resulting clusters depend strongly on the mutual orientations of the initial moieties. The dissociation of N2 is energetically favorable on Fe16, and the nitrogen atoms share the same Fe atom in the lowest energy state of the Fe16N2 species. The attachment of two nitrogen atoms leads to a decrease in the total spin magnetic moment of the ground-state Fe16 host by 6 µB due to the peculiarities of chemical bonding in the magnetic clusters. In order to gain insight into the dependence of properties on charge and to estimate the bonding energies of both N atoms, we performed optimizations of Fe16N and the singly charged ions of both Fe16N2 and Fe16N. It was found that the electronic properties of the Fe16N2 cluster, such as electron affinity and ionization energy, do not appreciably depend on the attachment of nitrogen atoms but that the average binding energy per atom changes significantly. The lowering in total energy due to the attachment of two N atoms was found to be nearly independent of charge. The IR and Raman spectra were simulated for Fe16N2 and its ions, and it was found that the positions of the most intense peaks in the IR spectra strongly depend on charge and therefore present fingerprints of the charged states. The chemical bonding in the ground-state Fe16N20,±1 species was described in terms of the localized molecular orbitals.

13.
Dalton Trans ; 49(44): 15592-15596, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33140783

RESUMEN

Herein, we report the synthesis and magnetic properties of the Co(ii) coordination compound with the 1,1'-bis(1-((pyrid-2-ylmethylene)hydrazono)ethyl)ferrocene (L) ligand, having the general formula [CoLCl2]. The static magnetic data analysis supported by the CASSCF/NEVPT2 calculations revealed the presence of the triaxial magnetic anisotropy with Dexp = +35.2 cm-1 and large rhombicity (E/D = 0.31) in this complex (Dcalc = +34.5 cm-1, E/Dcalc = 0.30). The dynamic magnetic data confirm that the complex shows a slow field-induced (HDC = 1000 Oe) magnetic relaxation behaviour.

14.
Dalton Trans ; 49(36): 12674-12685, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32959848

RESUMEN

Interaction and transformation of the mononuclear cationic dinitrosyl iron complex [Fe(SC(NH2)2)2(NO)2]+ (complex 1) upon binding with bovine serum albumin (BSA) have been explored using kinetic measurements, UV-Vis and fluorescence spectroscopy, and computational molecular modeling. BSA was found to bind up to five molecules of complex 1 per one protein molecule; as a result, the rate of NO release by complex 1 into solution decreases by a factor of 10. The binding constant of complex 1 with BSA measured by the quenching of intrinsic fluorescence of BSA is 5 × 105 М-1. Molecular docking calculations at pH = 7 have determined five-six low-energy binding sites for complex 1 at subunits I and II of BSA. The most stable protein-ligand complexes are located at the protein pockets near Cys34. The spectroscopic measurements and docking calculations have shown that the decomposition product of complex 1, the Fe(NO)2+ fragment, can form an adduct Fe(Cys34)(His39)(NO)2 (complex 2) with the coordination bonds of Fe with atoms S of Cys34 and ND of His39. The structure of complex 2 was supported by the density functional calculations of the absorption spectrum. Decomposition of complex 2 leads to nitrosylation of BSA at atom S of Cys34. Complexes 1 (bound with BSA), 2 and the nitrosylated BSA can serve as NO depot in plasma.


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Hierro/química , Óxidos de Nitrógeno/química , Albúmina Sérica Bovina/metabolismo , Tiourea/química , Animales , Sitios de Unión , Bovinos , Ligandos , Modelos Moleculares , Conformación Molecular
15.
Beilstein J Org Chem ; 16: 1820-1829, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765797

RESUMEN

2-Benzo[b]thienyl fulgides and fulgimides containing bulky diphenylmethylene substituents were synthesized in the form of their ring-opened E- or Z-isomers. In contrast to the majority of known fulgides/fulgimides, that form colored ring-closed structures under UV irradiation, the obtained compounds undergo an irreversible transformation leading to decoloration of their solutions. This rearrangement with the formation of the dihydronaphthalene core appeared to be by 2-3 orders of magnitude more efficient than for the known diphenylmethylene(aryl(hetaryl))fulgides. The molecular structures of E- and Z-isomers and of products of the photoinduced rearrangement completed by 1,5-H shift reaction, 3a,4-dihydronaphtho[2,3-c]furans(pyrroles) C, were established based on the data of 1H and 13C NMR spectroscopy and X-ray diffraction studies.

16.
J Phys Chem Lett ; 11(16): 6772-6778, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32689804

RESUMEN

Hybrid perovskite solar cells attract a great deal of attention due to the feasibility of their low-cost production and their demonstration of impressive power conversion efficiencies (PCEs) exceeding 25%. However, the insufficient intrinsic stability of lead halides under light soaking and thermal stress impedes practical implementation of this technology. Herein, we show that the photothermal aging of a widely used perovskite light absorber such as MAPbI3 can be suppressed significantly by using polyvinylcarbazole (PVC) as a stabilizing agent. By applying a few complementary methods, we reveal that the PVC additive leads to passivation of defects in the absorber material. Introducing an optimal content of PVC into MAPbI3 delivers a PCE of 18.7% in combination with a significantly improved solar cell operational lifetime: devices retained ∼70% of the initial efficiency after light soaking for 1500 h, whereas the control samples without PVC degraded almost completely under the same conditions.

17.
J Phys Chem Lett ; 11(14): 5563-5568, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32564599

RESUMEN

Recent studies have shown that charge transport interlayers with low gas permeability can increase the operational lifetime of perovskite solar cells serving as a barrier for migration of volatile decomposition products from the photoactive layer. Herein we present a hybrid hole transport layer (HTL) comprised of p-type polytriarylamine (PTAA) polymer and vanadium(V) oxide (VOx). Devices with PTAA/VOx top HTL reach up to 20% efficiency and demonstrate negligible degradation after 4500 h of light soaking, whereas reference cells using PTAA/MoOx as HTL lose ∼50% of their initial efficiency under the same aging conditions. It was shown that the main origin of the enhanced device stability lies in the higher tolerance of VOx toward MAPbI3 compared to the MoOx interlayer, which tends to facilitate perovskite decomposition. Our results demonstrate that the application of PTAA/VOx hybrid HTL enables long-term operational stability of perovskite solar cells, thus bringing them closer to commercial applications.

18.
ACS Appl Mater Interfaces ; 12(29): 32987-32993, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32583660

RESUMEN

Photoswitchable organic field-effect transistors (OFETs) with embedded photochromic materials are considered as a promising platform for development of organic optical memory devices. Unfortunately, the operational mechanism of these devices and guidelines for selection of light-sensitive materials are still poorly explored. In the present work, a series of photochromic dihetarylethenes with a cyclopentenone bridge moiety were investigated as a dielectric/semiconductor interlayer in the structure of photoswitchable OFETs. It was shown that the electrical performance and stability of the devices can be tuned by variation of the substituents in the structure of the photochromic material. In particular, it was found that dihetarylethenes with donor substituents demonstrated the best light-induced switching effects (wider memory windows and higher switching coefficients) in the devices. The operation mechanism of the light-triggered memory devices was proposed based on the differential in situ Fourier transform infrared (FTIR) spectroscopy data and regression analysis of the threshold voltage-programming time experimental dependencies. The established relationships will facilitate further rational design of new photochromic materials, thus paving a way to fast and durable organic optical memories and memory transistors (memristors).

19.
J Phys Chem Lett ; 11(7): 2630-2636, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32178515

RESUMEN

In this work, we report a comparative study of the gamma ray stability of perovskite solar cells based on a series of perovskite absorbers including MAPbI3 (MA = methylammonium), MAPbBr3, Cs0.15FA0.85PbI3 (FA = formamidinim), Cs0.1MA0.15FA0.75PbI3, CsPbI3, and CsPbBr3. We reveal that the composition of the perovskite material strongly affects the radiation stability of the solar cells. In particular, solar cells based on the MAPbI3 were found to be the most resistant to gamma rays since this perovskite undergoes rapid self-healing due to the special gas-phase chemistry analyzed with ab initio calculations. The fact that the solar cells based on MAPbI3 can withstand a 1000 kRad gamma ray dose without any noticeable degradation of the photovoltaic properties is particularly exciting and shifts the paradigm of research in this field toward designing more dynamic rather than intrinsically robust (e.g., inorganic) materials.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118041, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31955116

RESUMEN

Photochromic molecules which can absorb and emit light within the "biological window" (650-1450 nm) are of great interest for using in various important biomedical applications such as bio-imaging, photopharmacology, targeted drug delivery, etc. Here we present three new indoline spiropyrans containing conjugated cationic fragments and halogen substituents in the 2H-chromene moiety which were synthesized by a simple one-pot method. The molecular structure of the obtained compounds was confirmed by FT-IR, 1H and 13C NMR spectroscopy (including 2D methods), HRMS, elemental and single crystal X-ray analysis. Photochemical studies revealed the photochromic activity of spiropyrans at room temperature which caused photoswitchable fluorescence in the near-IR region after UV-irradiation. While the spirocyclic forms of compounds demonstrated absorption bands in the UV-Vis spectra with maxima in the visible region at about 445 nm and were not fluorescent, the photogenerated merocyanine isomers absorbed in the near-IR range at 708-738 nm and emitted at 768-791 nm. It was found that compound 1a with fluorine substituent possesses the most red-shifted absorption and emission bands of merocyanine form among all the known photochromic spiropyrans with maxima at 738 and 791 nm correspondingly. TD DFT calculations have shown that the longest wavelength absorption maxima of the merocyanine forms correspond to S0-S1 transitions of the isomers with at least one trans-trans-trans-configured vinylindolium fragment which brings them closer to cyanine-like structure and causes an appearance of the absorption and emission bands in the near-IR region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...