Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 180: 105710, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35932510

RESUMEN

The vertical distribution of phytoplankton is of fundamental importance in the structure, dynamic, and biogeochemical pathways in marine ecosystems. Nevertheless, what are the main factors determining this distribution remains as an open question. Here, we evaluated the relative influence of environmental factors that might control the coexistence and vertical distribution of pico-nanoplankton associated with the OMZ off northern Chile. Our results showed that in the upper layer Synechococcus-like cells were numerically important at all sampling stations. Pico-nano eukaryotes and phototrophic nanoflagellates (PNF) also showed high abundances in the upper layer decreasing in abundance down to the upper oxycline, while only Prochlorococcus showed high abundances under oxycline and within the oxygen-depleted layer. Statistical analyses evidenced that temperature, oxygen, and carbonate chemistry parameters (pH and dissolved inorganic carbon, DIC) influenced significantly the vertical distribution of phototrophic pico-nanoplankton. Additionally, we experimentally-evaluated the combined effect of low pH/low O2 conditions on a nanophytoplankton species, the haptophyte Imantonia sp. Under control conditions (pH = 8.1; O2 = 287.5 µM, light = 169.6 µEm-2s-1), Imantonia sp. in vivo fluorescence increased over fifty times, inducing supersaturated O2 conditions (900 µM) and an increasing pH (8.5), whereas upon an experimental treatment mimicking OMZ conditions (pH = 7.5; O2 = 55.6 µM; light = 169.6 µEm-2s-1), in vivo fluorescence declined dramatically, suggesting that Imantonia sp. did not survive. Although preliminary, our study provides evidence about the role of low pH/low O2 conditions on the vertical distribution of nanophytoplankton, which deserve future attention through both fieldwork and more extended experimental experiences.


Asunto(s)
Oxígeno , Agua de Mar , Chile , Ecosistema , Concentración de Iones de Hidrógeno , Oxígeno/metabolismo , Agua de Mar/química
2.
Proc Natl Acad Sci U S A ; 114(31): 8319-8324, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716941

RESUMEN

Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30-50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling.


Asunto(s)
Ciclo del Carbono/fisiología , Nitrificación/fisiología , Oxígeno/metabolismo , Fotosíntesis/fisiología , Prochlorococcus/metabolismo , Anaerobiosis , Organismos Acuáticos/metabolismo , Clorofila/metabolismo , Calentamiento Global , México , Microbiota/fisiología , Nitrógeno/metabolismo , Océanos y Mares , Perú
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA