Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Med Imaging ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37366357

RESUMEN

BACKGROUND: Agenesis of the corpus callosum (ACC) is a rare hereditary nervous system defect present at birth. ACC is an uncommon condition that is unrepresentative in the general population because some cases do not present with any identifiable symptoms in the early stage. CASE REPORT: We present a case of ACC in a two-month-old male patient who was diagnosed after birth. Although the initial brain ultrasound (US) showed dilation of the lateral ventricles and the absence of the corpus callosum, these findings were not fully confirmed. Therefore, magnetic resonance imaging (MRI) of the brain was conducted to confirm the complex diagnosis, and the examination revealed complete ACC. Diagnosing ACC in a neonate demonstrates the complexity of diagnosis through the clinical presentation, especially at an early age. CONCLUSION: The clinical utility of neonatal US and MRI highlights the importance of an early diagnosis of ACC. MRI is more effective than the US in detecting this condition, and these imaging modalities provide the patient with an early diagnosis, which helps in treatment management.

2.
Invest Ophthalmol Vis Sci ; 63(9): 18, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35960514

RESUMEN

Purpose: To quantitatively assess lateral geniculate nucleus (LGN) volume loss in the presence of lesions in the postgeniculate pathway and its correlation with optical coherence tomography retinal parameters. Methods: This was a case control study of patients recruited at the University Hospital Zurich, Switzerland. Nine patients who were suffering from lesions in the postgeniculate pathway acquired at least 3 months earlier participated. Retinal parameters were analyzed using spectral domain optical coherence tomography and a newly developed magnetic resonance imaging protocol with improved contrast to noise ratio was applied to measure LGN volume. Results: The affected LGN volume in the patients (mean volume 73.89 ± 39.08 mm3) was significantly smaller compared with the contralateral unaffected LGN (mean volume 131.43 ± 12.75 mm3), as well as compared with healthy controls (mean volume 107 ± 24.4 mm3). Additionally, the ganglion cell layer thickness corresponding with the affected versus unaffected side within the patient group differed significantly (mean thickness 40.5 ± 4.11 µm vs 45.7 ± 4.79 µm) compared with other retinal parameters. A significant linear correlation could also be shown between relative LGN volume loss and ganglion cell layer thickness decrease. Conclusions: Corresponding LGN volume reduction could be shown in patients with postgeniculate lesions using a newly developed magnetic resonance imaging protocol. LGN volume decrease correlated with ganglion cell layer thickness reduction as a sign of trans-synaptic retrograde neuronal degeneration.


Asunto(s)
Cuerpos Geniculados , Retina , Estudios de Casos y Controles , Humanos , Imagen por Resonancia Magnética/métodos , Tomografía de Coherencia Óptica , Vías Visuales/diagnóstico por imagen , Vías Visuales/patología
3.
Front Neurol ; 12: 723805, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621237

RESUMEN

Background: Visual snow is considered a disorder of central visual processing resulting in a perturbed perception of constant binocular flickering or pixilation of the whole visual field. The underlying neurophysiological and structural alterations remain elusive. Methods: In this study, we included patients (final n = 14, five dropouts; five females, mean age: 32 years) with visual snow syndrome (VSS) and age- and sex-matched controls (final n = 20, 6 dropouts, 13 females, mean age: 28.2 years). We applied diffusion tensor imaging to examine possible white matter (WM) alterations in patients with VSS. Results: The patient group demonstrated higher (p-corrected < 0.05, adjusted for age and sex) fractional anisotropy (FA) and lower mean diffusivity (MD) and radial diffusivity (RD) compared to controls. These changes were seen in the prefrontal WM (including the inferior fronto-occipital fascicle), temporal and occipital WM, superior and middle longitudinal fascicle, and sagittal stratum. When additionally corrected for migraine or tinnitus-dominant comorbidities in VSS-similar group differences were seen for FA and RD, but less pronounced. Conclusions: Our results indicate that patients with VSS present WM alterations in parts of the visual cortex and outside the visual cortex. As parts of the inferior fronto-occipital fascicle and sagittal stratum are associated with visual processing and visual conceptualisation, our results suggest that the WM alterations in these regions may indicate atypical visual processing in patients with VSS. Yet, the frequent presence of migraine and other comorbidities such as tinnitus in VSS makes it difficult to attribute WM disruptions solely to VSS.

4.
Front Hum Neurosci ; 14: 582031, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328934

RESUMEN

OBJECTIVE: Visual snow (VS) is a distressing, life-impacting condition with persistent visual phenomena. VS patients show cerebral hypermetabolism within the visual cortex, resulting in altered neuronal excitability. We hypothesized to see disease-dependent alterations in functional connectivity and gray matter volume (GMV) in regions associated with visual perception. METHODS: Nineteen patients with VS and 16 sex- and age-matched controls were recruited. Functional magnetic resonance imaging (fMRI) was applied to examine resting-state functional connectivity (rsFC). Volume changes were assessed by means of voxel-based morphometry (VBM). Finally, we assessed associations between MRI indices and clinical parameters. RESULTS: Patients with VS showed hyperconnectivity between extrastriate visual and inferior temporal brain regions and also between prefrontal and parietal (angular cortex) brain regions (p < 0.05, corrected for age and migraine occurrence). In addition, patients showed increased GMV in the right lingual gyrus (p < 0.05 corrected). Symptom duration positively correlated with GMV in both lingual gyri (p < 0.01 corrected). CONCLUSION: This study found VS to be associated with both functional and structural changes in the early and higher visual cortex, as well as the temporal cortex. These brain regions are involved in visual processing, memory, spatial attention, and cognitive control. We conclude that VS is not just confined to the visual system and that both functional and structural changes arise in VS patients, be it as an epiphenomenon or a direct contributor to the pathomechanism of VS. These in vivo neuroimaging biomarkers may hold potential as objective outcome measures of this so far purely subjective condition.

5.
Neuroimage ; 186: 399-409, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30342237

RESUMEN

PURPOSE: The lateral geniculate nucleus (LGN) is an essential nucleus of the visual pathway, occupying a small volume (60-160 mm3) among the other thalamic nuclei. The reported LGN volumes vary greatly across studies due to technical limitations and due to methodological differences of volume assessment. Yet, structural and anatomical alterations in ophthalmologic and neurodegenerative pathologies can only be revealed by a precise and reliable LGN representation. To improve LGN volume assessment, we first implemented a reference acquisition for LGN volume determination with optimized Contrast to Noise Ratio (CNR) and high spatial resolution. Next, we compared CNR efficiency and rating reliability of 3D Magnetization Prepared Rapid Gradient Echo (MPRAGE) images using white matter nulled (WMn) and grey matter nulled (GMn) sequences and its subtraction (WMn-GMn) relative to the clinical standard Proton Density Turbo Spin Echo (PD 2D TSE) and the reference acquisition. We hypothesized that 3D MPRAGE should provide a higher CNR and volume determination accuracy than the currently used 2D sequences. MATERIALS AND METHODS: In 31 healthy subjects, we obtained at 3 and 7 T the following MR sequences: PD-TSE, MPRAGE with white/grey matter signal nulled (WMn/GMn), and a motion-corrected segmented MPRAGE sequence with a resolution of 0.4 × 0.4 × 0.4 mm3 (reference acquisition). To increase CNR, GMn were subtracted from WMn (WMn-GMn). Four investigators manually segmented the LGN independently. RESULTS: The reference acquisition provided a very sharp depiction of the LGN and an estimated mean LGN volume of 124 ±â€¯3.3 mm3. WMn-GMn had the highest CNR and gave the most reproducible LGN volume estimations between field strengths. Even with the highest CNR efficiency, PD-TSE gave inconsistent LGN volumes with the weakest reference acquisition correlation. The LGN WM rim induced a significant difference between LGN volumes estimated from WMn and GMn. WMn and GMn LGN volume estimations explained most of the reference acquisition volumes' variance. For all sequences, the volume rating reliability were good. On the other hand, the best CNR rating reliability, LGN volume and CNR correlations with the reference acquisition were obtained with GMn at 7 T. CONCLUSION: WMn and GMn MPRAGE allow reliable LGN volume determination at both field strengths. The precise location and identification of the LGN (volume) can help to optimize neuroanatomical and neurophysiological studies, which involve the LGN structure. Our optimized imaging protocol may be used for clinical applications aiming at small nuclei volumetric and CNR quantification.


Asunto(s)
Cuerpos Geniculados/anatomía & histología , Cuerpos Geniculados/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Femenino , Humanos , Aumento de la Imagen , Masculino , Persona de Mediana Edad , Estándares de Referencia , Reproducibilidad de los Resultados , Relación Señal-Ruido , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...