Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Pharmacol ; 104: 104313, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37972914

RESUMEN

When silica nanoparticles (SiNP) reach the water bodies interact with the already existing pollutants in the environments. This study aimed to evaluate the ecotoxicity of SiNP under the presence/absence of Cu in mosquitofish (Gambusia holbrooki). Fish were exposed to 0, 10 and 100 mg SiNP L-1, alone or mixed with Cu (0.25 mg L-1). After 96 h, the amount of colony forming units (CFU) of bacteria living on the skin mucus was analysed, and oxidative stress, tissue damage enzymes, and neurotoxicity were evaluated. We observed a reduction in CFU when Cu was present in the media. The liver was the target organ, evidencing a decrease in tissue damage enzymatic activities, activation of the antioxidant system in all treatments, and lipid oxidative damage when the SiNP and Cu were mixed. Overall, SiNP ecotoxicity was proved, which could also be enhanced by the presence of ubiquitous elements such as metals.


Asunto(s)
Ciprinodontiformes , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Estrés Oxidativo , Antioxidantes , Ciprinodontiformes/fisiología , Contaminantes Químicos del Agua/toxicidad
2.
Environ Toxicol Pharmacol ; 102: 104238, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37524194

RESUMEN

Silica nanoparticles (SiNP) are the most produced nanomaterials due to their variety of applications. When released to environments, surface water bodies are their main final sink. SiNP toxicity is still inconclusive and may vary according to particle properties such as their size. We analyzed the size-related effects of SiNP (22 and 244 nm) on mortality, life history traits, and oxidative stress in the cladoceran Ceriodaphnia reticulata. The smaller SiNP (LC5072 h: 105.5 µg/ml) were more lethal than the larger ones (LC5072 h >500 µg/ml). The 22 nm-sized SiNP decreased the number of molts and neonates, increased superoxide dismutase and inhibited glutathione S-transferase activities, while larger SiNP did not exert substantial effects on the organisms at the tested concentrations. In conclusion, SiNP toxicity depended on their size, and this information should be considered for regulatory purposes and to the development of safe-by-design nanoproducts to ultimately guarantee the environment protection.


Asunto(s)
Cladóceros , Nanopartículas , Animales , Humanos , Recién Nacido , Nanopartículas/toxicidad , Estrés Oxidativo , Superóxido Dismutasa , Dióxido de Silicio/toxicidad
3.
Toxicol Appl Pharmacol ; 471: 116560, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37230195

RESUMEN

The imminent increase in global food demand inevitably leads to an increase in agricultural practices, with an emphasis on pesticide applications. Nanotechnology-based pesticides, or nanopesticides, have gained importance as they are more efficient and, in some cases, less toxic than their conventional counterparts. However, concerns about these novel products have arisen as evidence about their (eco)safety is controversial. This review aims to: (1) introduce the currently applied nanotechnology-based pesticides and their mechanisms of toxic action; (2) describe their fate when released into the environment, with an emphasis on aquatic environments; (3) summarize available research on ecotoxicological studies in freshwater non-target organisms through a bibliometric analysis; and (4) identify gaps in knowledge from an ecotoxicological perspective. Our results show that the environmental fate of nanopesticides is poorly studied and depends on both intrinsic and external factors. There is also a need for comparative research into their ecotoxicity between conventional pesticide formulations and their nano-based counterparts. Among the few available studies, most considered fish species as test organisms, compared to algae and invertebrates. Overall, these new materials generate toxic effects on non-target organisms and threaten the integrity of the environment. Therefore, deepening the understanding of their ecotoxicity is crucial.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Animales , Plaguicidas/toxicidad , Nanotecnología , Peces , Agricultura , Contaminantes Químicos del Agua/toxicidad
4.
Environ Sci Pollut Res Int ; 30(10): 27137-27149, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36378381

RESUMEN

Silver nanoparticles (AgNPs) are applied in diverse industries due to their biocide and physicochemical properties; therefore, they can be released into aquatic systems, interact with environmental factors, and ultimately exert adverse effects on the biota. We analyzed AgNPs effects on Ceriodaphnia reticulata (Cladocera) through mortality and life-history traits, considering the influence of food (Tetradesmus obliquus, Chlorophyceae) presence and concentration. C. reticulata was exposed to AgNPs in acute (absence and two algae concentrations plus five AgNPs treatments) and chronic assays (two algae concentrations plus three AgNPs treatments). AgNPs did not affect algae flocculation but increased Ag+ release, being these ions less toxic than AgNPs (as proved by the exposure to AgNO3). A reduction in AgNPs acute toxicity was observed when algae concentration increased. Acute AgNP exposure decreased C. reticulata body size and heart rate. The chronic AgNP exposure reduced C. reticulata molt number, growth, heart rate, and neonate size:number ratio, being these effects mitigated at the highest algae concentration. Increases in relative size and number of neonates were observed in AgNP treatments suggesting energy trade off. The increased Ag+ release with food presence suggests that the AgNP-algae interaction might be responsible of the decreased toxicity. Although algae reduced AgNP toxicity, they still exerted adverse effects on C. reticulata below predicted environmental concentrations. Since algae presence reduces AgNP effects but increases Ag+ release, studies should be continued to provide evidence on their toxicity to other organisms.


Asunto(s)
Chlorophyceae , Cladóceros , Nanopartículas del Metal , Animales , Humanos , Recién Nacido , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Plata/toxicidad , Plata/química
5.
Water Environ Res ; 93(11): 2505-2526, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34470080

RESUMEN

In this article, we performed a literature review on the metallic, metal oxide, and metalloid nanoparticles (NP) effects on freshwater microcrustaceans, specifically focusing on (i) the main factors influencing the NP toxicity and (ii) their main ecotoxicological effects. Also, given that most studies are currently developed on the standard test species Daphnia magna Straus, we analyzed (iii) the potential differences in the biological responses between D. magna and other freshwater microcrustacean, and (iv) the ecological implications of considering only D. magna as surrogate of other microcrustaceans. We found that NP effects on microcrustaceans depended on their intrinsic properties as well as the exposure conditions. Among the general responses to different NP, we identified body burial, feeding inhibition, biochemical effects, metabolic changes, and reproductive and behavioral alterations. The differences in the biological responses between D. magna and other freshwater microcrustacean rely on the morphology (size and shape), ecological traits (feeding mechanisms, life cycles), and intrinsic sensitivities. Thus, we strongly recommend the use of microcrustaceans species with different morphological, physiological, and ecological characteristics in future ecotoxicity tests with NP to provide relevant information with regulation purposes regarding the discharge of NP into aquatic environments. PRACTITIONER POINTS: Nanoparticles effects depend on intrinsic and external factors. Nanoparticles affect the morphology, physiology, and behavior. Effects on Daphnia differ from other microcrustaceans. The use of more diverse test species is suggested.


Asunto(s)
Nanopartículas del Metal , Metaloides , Nanopartículas , Contaminantes Químicos del Agua , Animales , Daphnia , Agua Dulce , Nanopartículas del Metal/toxicidad , Óxidos , Contaminantes Químicos del Agua/toxicidad
6.
Environ Toxicol Pharmacol ; 87: 103689, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34144182

RESUMEN

This review aims to (i) provide a current overview of the main characteristics of SiNP (physical and chemical properties, applications, and emissions), (ii) evaluate the scientific production up to date concerning SiNP, with focus on their toxic effects, through a bibliometric analysis, (iii) describe the main toxic mechanisms of SiNP, (iv) assess the current knowledge about ecotoxicity of SiNP on aquatic organisms (marine and freshwater), and (v) identify the main gaps in the knowledge of SiNP toxicity from an environmentally point of view. The scientific production of SiNP concerning their chemical and physical characteristics has increased exponentially. However, little information is available regarding their ecotoxicity. Particle functionalization is a key factor that reduces SiNP toxicity. Most of the studies employed standard species as test organisms, being the local/native ones poorly represented. Further studies employing long-term exposures and environmentally relevant concentrations are needed to deepen the knowledge about this emergent pollutant.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Bibliometría , Humanos
7.
Bull Environ Contam Toxicol ; 107(3): 421-426, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33974084

RESUMEN

Silver nanoparticles (AgNP) are unique because of their biocide properties. Once released to environment, AgNP interact with the natural organic matter which impact on their fate, dispersion, and ultimate toxicity. We carried out an ex vivo exposure of gill of Corydoras paleatus fish to 100 µg L-1 of AgNP or AgNO3, alone and in combination with 10 mg L-1 of humic acids (HA), with the aim to evaluate the potential mitigation of HA on AgNP toxic effects. We analyzed Ag accumulation and oxidative stress biomarkers. The results showed high bioaccumulation after the AgNO3+HA exposure. An inhibition of glutathione-S-transferase enzymatic activity and depletion of reduced glutathione levels were registered after the AgNO3 exposure, and increased lipid peroxidation levels in the case of AgNP one. Oxidative responses were mitigated when the HA were present in the media. Overall, the knowledge about the fate of this emergent pollutant was deepened through this study.


Asunto(s)
Nanopartículas del Metal , Nitrato de Plata , Animales , Branquias , Sustancias Húmicas , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Nitrato de Plata/toxicidad
8.
Fish Physiol Biochem ; 47(4): 829-839, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33723682

RESUMEN

This study aimed to analyze the cold stress effects (in terms of hematology, energy reserves, and oxidative stress) in Piaractus mesopotamicus (pacú) and their mitigation by a Pyropia columbina red seaweed-supplemented diet. For this purpose, juvenile fish were fed with a control (CD) or a red seaweed-supplemented diet (RD) for 60 days, and then, the animals were exposed to a low temperature (14 °C) and a control temperature (24 °C) for 24 h. The cold shock generated an increase of hemoglobin levels in fish fed with both diets. In CD-fed fish, plasmatic triglycerides, cholesterol, and hepatic glycogen decreased after the thermal shock; meanwhile, the animals fed with RD showed decreased hepatic proteins, but increased cholesterol and hepatic glycogen. Regarding oxidative stress, antioxidant enzymes augmented their activity in the liver, intestine, and gills; meanwhile, lipid oxidative damage was observed in the liver and intestine of fish exposed to 14 °C and fed with both diets. Pacú was sensitive to cold shock, but no mitigation effects were observed in fish fed with the supplemented diet. Further research should target higher concentrations of P. columbina in supplemented diets to take advantage of this valuable resource.


Asunto(s)
Characiformes , Respuesta al Choque por Frío , Suplementos Dietéticos , Rhodophyta , Algas Marinas , Animales , Characiformes/sangre , Characiformes/metabolismo , Dieta , Proteínas de Peces/metabolismo , Branquias/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Glucógeno/metabolismo , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Músculos/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
9.
Environ Sci Pollut Res Int ; 28(24): 31659-31669, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33608791

RESUMEN

Silver nanoparticles (AgNPs) are one of the most produced nanoproducts due to their unique biocide properties. The natural organic matter has an important impact on nanoparticle's dispersion as it may alter their fate and transport, as well as their bioavailability and toxicity. Therefore, this study aimed to evaluate the mitigatory effect of humic acids (HAs) on AgNP toxicity. For this purpose, we carried out an ex vivo exposure of gill of Piaractus mesopotamicus fish to 100 µg L-1 of AgNPs or AgNO3, alone and in combination with 10 mg L-1 of HAs. In parallel, a complete AgNP characterization in the media, including the presence of HAs, was provided, and the Ag+ release was measured. We analyzed Ag bioaccumulation, antioxidant enzymes activities, lipid peroxidation, antioxidant capacity against peroxyl radicals, and reduced glutathione levels in fish tissue. Our results indicated the Ag+ release from AgNPs decreased 28% when the HAs were present in the media. The Ag accumulation in gill tissue exposed to AgNPs alone was higher than the AgNO3 exposure, and sixfold higher than the treatment with the HA addition. Moreover, after both Ag forms, the catalase enzyme augmented its activity. However, those responses were mitigated when the HAs were present in the media. Then, our results suggested the mitigation by HAs under the exposure to both Ag forms, providing valuable information about the fate and behavior of this emergent pollutant.


Asunto(s)
Nanopartículas del Metal , Contaminantes Químicos del Agua , Animales , Branquias/química , Sustancias Húmicas , Nanopartículas del Metal/toxicidad , Plata/análisis , Contaminantes Químicos del Agua/análisis
10.
J Therm Biol ; 88: 102497, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32125985

RESUMEN

This study investigated the effects of cold stress on morphometrical and hematological biomarkers, energy metabolism, and oxidative stress in different tissues of P. mesopotamicus, and the protective role of ß-carotene. Fish were fed with a control diet (CD) and the same diet supplemented with 105 mg/kg ß-carotene (BD) for 60 days. After the feeding trial, fish fed CD or BD diets were exposed to control (24 °C) and low temperature (14 °C) for 24 h. Fish (CD and BD) exposed to thermal stress showed lower hepatosomatic index. The hemoglobin increased only in CD-fed fish exposed to 14 °C. Increased glycemia, plasmatic protein depletion, and decreased hepatic glycogen were observed in fish fed the CD, while only the lipid levels in liver were augmented in BD-fed fish exposed at 14 °C. Regarding the oxidative stress, increased antioxidant enzymes activity and lipid peroxidation were observed in CD-fed fish exposed to cold. The two-way ANOVA showed an interaction between dietary treatment and temperature for glucose and oxidative stress biomarkers, with the highest values recorded in 14 °C-exposed fish fed with the CD. Our study demonstrated that cold stress had the greatest impact on fish oxidative status, and ß-carotene reduces harmful effects induced by cold in P. mesopotamicus.


Asunto(s)
Antioxidantes/farmacología , Characiformes/fisiología , Respuesta al Choque por Frío/efectos de los fármacos , Suplementos Dietéticos , beta Caroteno/farmacología , Animales , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
11.
Curr Pharm Des ; 25(37): 3927-3942, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31512995

RESUMEN

The increasing production and use of nanoparticles (NP) have raised concerns regarding the potential toxicity to human and environmental health. In this review, we address the up to date information on nanotoxicity using fish as models. Firstly, we carried out a systematic literature search (articles published up to February 2019 in the Scopus database) in order to quantitatively assess the scientific research on nanoparticles, nanotoxicity and fish. Next, we carried out a narrative synthesis on the main factors and mechanisms involved in NP toxicity in fish. According to the bibliometric analysis, there is a low contribution of scientific research on nanotoxicity compared with the general nanoparticles scientific production. The literature search also showed that silver and titanium NP are the most studied nanomaterials and Danio rerio is the fish species most used. In comparison with freshwater fish, the effects of nanomaterials on marine fish have been little studied. After a non-systematic literature analysis, we identified several factors involved in nanotoxicity, as well as the effects and main toxicity mechanisms of NP on fish. Finally, we highlighted the knowledge gaps and the need for future research.


Asunto(s)
Nanopartículas del Metal/toxicidad , Nanopartículas/toxicidad , Pez Cebra , Animales , Plata , Titanio , Pruebas de Toxicidad
12.
Aquat Toxicol ; 211: 46-56, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30946994

RESUMEN

The incorporation of silver nanoparticles (AgNPs) in commercial products is increasing rapidly. The consequent release of AgNPs into domestic and industrial wastewater raises environmental concerns due to their anti-microbial properties and toxicity to non-target aquatic organisms. The aim of the present study was to investigate the effects of nanArgen™ (Nanotek S.A.), a AgNP-enabled consumer product, in the marine bivalve Mytilus galloprovincialis. Two environmentally relevant concentrations of nanArgen™ (1 and 10 µg/L) were tested in vivo for 96 h, and Ag was quantified in mussel soft tissue and natural seawater (NSW). nanArgen™ suspensions were characterized via TEM, SEM, EDS, DLS, and UV-vis optical analysis. Several molecular and biochemical responses were investigated in exposed mussels: lysosomal membrane stability by Neutral Red Retention Time (NRRT) assay; micronucleus (MN) frequency in hemocytes; metallothionein (MT) protein content and gene expression (mt10 and mt20); catalase (CAT) and glutathione-S-transferase (GST) activities; malondialdehyde (MDA) accumulation in digestive glands; and efflux activity of ATP-binding cassette transport proteins (ABC) in gill biopsies. SEM, TEM and DLS analyses confirmed the presence of well-defined AgNPs in nanArgen™ which were roughly spherical with an average particle size of approx. 30 ± 10 nm. DLS analysis revealed the formation of AgNP aggregates in nanArgen™ suspension in NSW (Z-average of 547.80 ± 90.23 nm; PDI of 0.044). A significant concentration-dependent accumulation of Ag was found in mussels' whole soft tissue in agreement with a concentration-dependent decrease in NRRT and an increase of MN frequency in hemocytes and GST activities in digestive glands. A significant increase in MDA levels and MT via both molecular and biochemical tests, were also observed but only at the highest nanArgen™ concentration (10 µg/L). No changes were observed in CAT activities. ABC efflux activities in gill biopsies showed a significant decrease (p < 0.05) only at the lowest concentration (1 µg/L). On such basis, nanArgen™ is shown to be able to induce toxicity and Ag accumulation in marine mussels similarly to AgNPs and in short-term exposure conditions at environmentally relevant concentrations. AgNP-enabled products, instead of pristine AgNPs, should be the focus of future ecotoxicity studies in order to address any risks associated to their widespread use, disposal and uncontrolled release into the aquatic environment for non target species.


Asunto(s)
Nanopartículas del Metal/toxicidad , Mytilus/efectos de los fármacos , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Branquias/química , Branquias/efectos de los fármacos , Branquias/metabolismo , Hemocitos/efectos de los fármacos , Hemocitos/patología , Lisosomas/efectos de los fármacos , Nanopartículas del Metal/análisis , Metalotioneína/metabolismo , Micronúcleos con Defecto Cromosómico/inducido químicamente , Mytilus/química , Mytilus/metabolismo , Agua de Mar/química , Plata/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...